返回首页

红外变换光谱仪(红外光谱仪化学)

来源:www.haichao.net  时间:2023-01-17 18:21   点击:104  编辑:admin   手机版

1. 红外光谱仪化学

检测分子结构和化学组成

红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。

对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。

2. 近红外光谱仪与红外光谱仪

近红外光谱仪的基本工作原理: 波长在700nm – 2,500nm (4,000–14,300cm-1) 的光谱为近红外光谱。

它是一种既快速(十到二十秒钟) 又简便(不需作样品前处理) 的测试手段, 这种方法的特点是对样品作一步式组份(需测的浓度大于0.01%) 分析而不需破坏样品。

如果产品颜色是质量指标之一、您可选400nm-1,100nm 的图谱数据作鉴定。

近红外光谱仪适用于对含有C-H, N-H, O-H 和S-H 化学键 的化合物作组份分析。

在700 – 2,500 nm 的近红外波长范围内, 含有上述化合键的物质(药品、烟草、食品、农作物、聚合物、石油化工产品等) 会产生吸收。

一些物质除在1,450 nm 到2,050 nm 之间产生第一谐波外,往往还会分别在1,050 nm - 1,700nm 和700 nm - 1,050 nm 谱带内产生第二及第三谐波。

这些谐波的组合构成了被测物质在近红外光谱带内的特征吸收谱图-指纹图。

相同的近红外谱图(样品的指纹图) 一定是从相同的物质得到。

这也是应用近红外光谱仪作质量管理的主导基础原理。

有机物在近红外光谱带内的吸收强度比在中红外(如FT-IR) 的吸收强度弱10 到1,000 倍。

由于这特殊的弱吸收优点, 近红外射线能很容易地穿透未经研片与稀释等需作预处理的非透明样品,实现透射吸收;而另一部分反射光谱也可很容易地被检测。但是如何利用近红外图谱来对原材料或产品进行质量监控呢? 答案是利用统计学理论建立被测样品的数据库或校正曲线,而统计学之成败与校正曲线(数据库) 的相互转移性有决定性的关系。

在建立校正曲线或数据库之前, 近红外仪器的使用者把日常的测试样品先作近红外扫描, 然后再用传统分析法(如:GC、HPLC、TKN、FIA、折光仪、… …) 准确测定出样品的数值, 具有不同指标的样品在近红外光谱中将产生不同强度的吸收图谱(不是某一吸收峰), 利用专用软件处理, 便可得到校正曲线或数据库,分析人员可利用该校正曲线或数据库方便快速地通过测定未知样品的近红外谱图得知其被测指标的数据。

3. 红外光谱 化学

傅里叶变换红外光谱分析(第三版)

《傅里叶变换红外光谱分析(第三版)》是2016年化学工业出版社出版的图书,作者是翁诗甫、徐怡庄

。红外光谱作为“分子的指纹”广泛用于分子结构和物质化学组成的研究。《傅里叶变换红外光谱分析》(第三版)系统地介绍了红外光谱的基本概念、傅里叶变换红外光谱学的基本原理、红外光谱仪的结构及其附件原理和使用技术、红外光谱样品制备和测试技术、红外光谱数据处理技术、红外光谱谱图解析、红外光谱的定性分析和未知物的剖析、红外光谱的定量分析等。

4. 红外光谱仪化学测什么

红外测试一般主要分为溴化钾压片法、ATR及液体样品池方法。

溴化钾压片方法适合粉末样品,此方法中涉及溴化钾带入的杂峰影响,所以我们一般选择扣除溴化钾背景和空气背景方法(具体方法客户可以指定),扣除溴化钾背景可以尽量避免溴化钾引入的杂峰(主要因为溴化钾极易吸水,羟基峰影响非常明显)。

ATR方法适合各种固体,块状薄膜,液体等无法研磨成粉末样品,该方法优势是无其它杂质峰干扰,但是缺点为有些样品峰会比较弱。

液体样品池法,一般适合于一些液体样品测试,如果采用的是溴化钾窗片,样品里不能含水,不能跟溴化钾反应。

5. 红外线光谱法化学

根据结构中特征基团的波数范围进行推测,如3100-3200cm-1 处有一吸收峰,推测有OH,1700-1800CM-1处有吸收峰,推测有C=O等等

顶一下
(0)
0%
踩一下
(0)
0%