返回首页

汽车三维扫描仪(汽车三维扫描仪怎么用)

来源:www.haichao.net  时间:2023-01-20 04:32   点击:81  编辑:admin   手机版

1. 汽车三维扫描仪怎么用

上维扫描技术的可应用以下领域:

1. 产品三维检测

三维扫描在不对扫描物体造成磨损破坏,不受物品大小限制的前提下提供可靠真实的三维数据。将得到的三维数据与三维图纸进行比对,可以快速准确地获取工件各个位置的偏差,对于后期的产品修改和研发提供依据。同时,快捷的扫描也大大提高检测的效率,减少时间和人力成本。

2. 逆向设计

通过三维扫描可以将物体的三维外形数字化,得到一组与实物尺寸1:1的三维数字化模型。用户可以用这三维数据配合相应专业软件进行数字化模拟分析,直观方便地进行诸如产品气动性分析,强度分析,应力分析,为后期产品的优化改良提供依据和参考。

 3. 维护保养

轨道列车长时间运行过程中车轮的内缘和铁轨的磨损程度直接影响到列车的刹车性能和行车的稳定性,当磨损达到一定程度后必须对相应的零部件进行更换。使用三维扫描仪能快速完整准确地获取车轮等关键零部件的三维外形数据,通过专业分析获取相应尺寸,为维护保养提供技术支持。

 

4. 文化应用

通过三维扫描可以获得扫描物体的三维数据。该数据通过相应的转化和编辑便可以导入雕刻机软件中,可以为一些仿古家具的修复和复现提供更友好的解决方案。

5. 虚拟现实展示

通过将三维数据应用在虚拟场景中,配合虚拟现实技术,可以实现让消费者以更轻松更便捷的方式更清楚得了解产品的外观结构,提高产品的宣传效果。

 

6. 模具制造领域

模具制造应用于机械、汽车、航空、轻工、电子、家电、能源、化工等几乎所有制造领域,近10年来,我国模具工业一直保持着快速发展的态势。未来,国内模具产品将朝着更加精密、复杂,模具尺寸更大、制造周期更短的方面发展。这就要求模具制造技术能够更好的体现信息化、数字化、精细化、高速化、自动化。三维扫描则可以基本满足该领域的各种需求。

 

7. 鞋服制造领域

随着三维数字化技术的发展,数字化服装(鞋)设计、数字化服装(鞋)结构设计、数字化服装(鞋)定制与三维服装(鞋)CAD技术等问题日益被行业所提及。工业三维扫描仪、人体三维扫描仪可灵活准确地对人体及物体进行三维测量,获得有效数据,建立客观、精确反映人体特征的数据库,方便易查便于比较、分析、应用,加速服装、制鞋企业的数字化进程。

 

8. 游戏领域

   随着技术的进步,现代计算机游戏已经进入了三维,互动,虚拟现实阶段,三维扫描不仅可以为游戏,娱乐系统提供大量具有极强真是感的三维彩色模型,还可以将游戏者的形象扫描入到系统中,让你感受到梦幻般的效果

9. 医疗领域

包括牙齿,面部,肢体等的尺寸,因此对美容,矫形,修复,口腔医学,假肢制作都非常有用。在发达中,美容,整形外科,假肢制造,人类学,人体工程学研究等工作都开始应用三维扫描仪。同时在考古,刑侦,有时需要根据人或动物的骨骼来恢复其生前的形象,也可采用三维扫描仪将骨骼的坐标数据输入计算机作为恢复工作的基础数据。

2. 三维扫描仪在汽车配件行业的应用

汽车检具设计有哪些步骤:   1、工件和检具体设计建模 —— 汽车检具   首先要参照零件图纸分析工件,初步拟定检具设计方案,确定检具的基准面、凹凸情况,检测截面、定位面等,并简单绘制其二维示意图。    由于车身覆盖件以自由曲面为主的特点,“实物反求”是目前建模的通用方法。反求即依据已经存在的工件或实物原型,用激光扫描仪进行数据采集,并经过数据 处理、三维重构等过程,构造具有具体形状结构的原型模型的方法。我们用激光扫描仪对标准的工件表面进行扫略,采集到以点云为主的件表面特征信息,将点坐标 转换到车身坐标下,用surfacer软件处理点信,得到工件表面曲面的特征曲线,从而生成最终的自由曲面模型;同时可以通过点云到曲面的最大最小距离来 检测所生成的原形模型。应注意的是,此时所得到的模型是没有厚度的片体模型,要根据扫描仪扫略的表面分清该模型为工件的内或外表面,这对于检具体的设计尤 为重要。   实现检具对工件自由曲面的检测,一般使检具体的表面与工件内表面保持3或5mm常数间 隙,数控加工机床能按照所设计的型面数模达到较高精度的要求,实际检测时通过检具型面配合专用的量具往复移动即可测量出工件曲面的偏差。工件外轮廓的检测 方法主要有两种,设计所对应的检具时:

①检具体表面沿工件外轮廓切向向外延伸20mm左右;②沿工件外轮廓法向方向向下延伸20mm左右。在通用的CAD 软件(如UG)中,将工件表面向内offset3或5mm的距离(如果所生成的工件模型为外表面,在作offset时还要加上工件的厚度),接着把该曲面 沿其轮廓的切向或法向延伸20mm,得到检具体的检测表面,再向基准面拉伸一定距离即是检具体模型。由于车身覆盖件较为复杂,在生成检具体检测表面时大多 需要上述两种方法的结合,而对于一些特殊的型面,这一点仍然难以实现。图2所示为复杂型面的处理示意图。图中内引擎支座的工件表面在1,2两处明显产生自 相交和干涉,为了保证工件的主要轮廓得到检测,牺牲了具有垂直高度差的转角处的检测,生成如图所示的检具体表面,最后在检具体表面沿工件轮廓和间隔3mm 双划线,以方便检测工件轮廓。当然,在检具(尤其是检具体)的设计中还会碰到很多类似的问题,都需要对检具原理的渗透理解和经验进行后期处理。   2、断面样板的设计建模    对工件关键形面的检测一般通过断面样板来实现,检具的断面样板分为旋转式和插入式两种,当断面样板的跨度超过300mm时,为保证垂直方向的检测精度, 通常将其设计为插入式。检具体表面检测的是工件的内表面,断面样板则横跨在工件外表面上,用来检测关键截面的外表面,一般其工作表面距离工件外表面 2-3mm,其建模方法与检具表面类似。断面样板的板体材料一般为钢或铝等金属,工作表面部分可用铝或树脂等制成。复杂形面的断面样板在旋转或插入时会产 生干涉,实际设计中可以将其分段处理,如图3所示。   若设置成插入式断面样板,则与工件定位销发生干涉;若设置成单一旋转式,由于工件本身多折面性,造成与检具体或工件发生干涉,将其设计成两块独立旋转式断面样板,即可满足全面检测的要求。   3、工件的定位和夹紧 ——汽车检具    工件正确合理的定位是准确测量的基础。车身覆盖件在检具上的定位方式主要由定位孔和夹头夹紧定位或用永久磁铁夹紧配合完成。随着检具在车身制造中的广泛 应用,杠杆式活动夹头和永久磁铁均有系列化产品选购,活动夹头还配置有不同型式和尺寸的支架或托架。大多的车身覆盖件都有主、副两定位孔,主定位销一般为 圆柱销(圆孔)或菱形销(腰孔),以限制X. Y两方向的自由度;副定位销为圆锥销或菱形塞销,用以限制Z.X.Y.Z四方向的自由度。设计检具时,在检 具体上的定位孔位置打孔(以放入定位销衬套为准),并给出定位孔的车身坐标。同时,在工件刚性较好且分布合理的位置布置定位垫片和活动夹头,以保证工件的 牢固定位设计时要尽量减少夹紧点数量,保证活动夹头工作时不与其它部件产生干涉,并考虑到工人的操作方便,最终给出定位垫片上表面中心的车身坐标。   4、底板总成的设计    在检具体上表面沿基准面方向拉伸一定的距离,使其最低点大于150mm的厚度,以保证检具体有足够的强度,同时尽量让检具体底面,即底板总成的上表面 (基面),在车身坐标系的整数位置上。检具体底板总成一般由基板、槽钢(必要时在中间加工字钢)、定位块和万向轮组成,当基板由检具体固定好后,其它部件 即可根据实际的情况选用标准型号。   5、孔的检测    车身冲压件中对许多重要的孔和翻边等需要单独检测。在检具的设计中通常在检具体上表面加上1mm左右厚的凸台,凸台的中心与工件孔中心在同一轴线上,直 径比孔径大5mm,并在凸台上采用双划线方式检测,当被测孔的精度要求比较高时,采用定位孔的方式用塞规和衬套检测。在车身大型覆盖件中,由于这类检具的 形状复杂、体积庞大、制作成本较高、检测对象单一、柔性差,难以快速获得大量的准确信息,已逐步被先进的自动化检测手段(如在线检测系统)所取代,但对于 大批量生产的小型冲压件的检测,目前我国汽车生产厂家仍主要依靠这类检具。

3. 汽车整车三维扫描细节分享fashionjie

1、多点测量点、线、圆、孤、椭圆、矩形,提高测量精度;

2、组合测量、中心点构造、交点构造,线构造、圆构造、角度构造;

3、坐标平移和坐标摆正,提高测量效率;

4、聚集指令,同一种工件批量测量更加方便快捷,提高测量效率;

5、测量数据直接输入到AutoCAD中,成为完整的工程图;

6、测量数据可输入到Excel或Word中,进行统计分析,可割出简单的Xbar-S管制图,求出Ca等各种参数;

7、多种语言界面切换;

8、记录用户程序、编辑指令、教导执行;

9、大地图导航功能、刀模具立体旋转灯、3D扫描系统、快速自动对焦、自动变倍镜头;

10、可选购接触式探针测量,软件可以自由实现探针/影像相互转换,用于接触式测量不规则的产品,如椭圆、弧度 、平面度等尺寸;也可以直接用探针打点然后导入到逆向工程软件做进一步处理!

4. 车载三维激光扫描仪

安桌手机互联方法:

1.扫描二维码,下载软件,安装并打开;

2.DA屏打开蓝牙连接功能;

3.打开手机蓝牙,找到“MYLANNIA”,进行配对连接;

4.Miracast连接:手机设置中查找此功能,开启后与车机进行连接;

5.模式选择。备注:不同手机或型号,开启方法和名称不一样,如“屏幕共享”、“屏幕镜像”等注意事项:

1.智能互联模式为行车模式,只支持系统原有软件,“灰色”为未安装;

2.导航地图页面可双点触控

5. 汽车三维扫描仪怎么用的

三维激光扫描技术又称为实景复制技术,利用激光测距原理,通过高速激光扫描测量方法,大面积、高分辨率地获取被测对象表面的高精度三维坐标数据以及大量空间点位信息,可以快速建立高精度(精度可达毫米级)、高分辨率的物体真实三维模型以及数字地形模型。是测绘领域继GPS技术之后的又一次技术革命。

三维激光扫描系统通过扫描目标物体,可获得海量的高精度空间三维点云数据,单点精度可达到毫米级,并且可具有真实色彩信息。获取的点云模型能充分体现出目标物体的三维特征信息。根据不同的需求,通过对点云数据的分析、处理,可以获得满足不同需求的丰富数据,从而在不同领域发挥不可比拟的重要作用。

相较于传统二维平面图纸的抽象表示,三维激光扫描技术,可以直观反映真实世界的本来面目,应用领域非常广泛,主要有文物古迹保护、建筑、规划、土木工程、工厂改造、室内设计、建筑监测、交通事故分析、法律证据收集、灾害评估、船舶设计、数字城市、军事等。

三维激光扫描系统根据其搭载的不同的平台分为:

(1) 固定式激光扫描系统。也称地面三维激光扫描仪,使用时在地面不同方位设置测站进行扫描。

(2) 车载激光扫描系统。以汽车作为平台,在连续移动过程中连续快速扫描。

(3) 机载激光扫描系统。以无人机或有人机作为平台,在空中对地面进行连续快速扫描。

(4) 手持型激光扫描系统。属于便携式激光扫描仪,使用简单、快捷、轻便。

(5) 背包式激光扫描系统。采用人工背包式背负作业,能适应复杂路线及环境。

应用领域:

一、古建文物保护领域

根据扫描获取的点云数据,生成古建正射影像。

根据正射影像可绘制古建平面、立面及剖面图等传统施工图纸。

根据三维点云模型可辅助建模,细节更加丰富,模型更加真实准确,方便后续对古建的修复、维护及展示等工作。

二、工程领域

1. 地形测量

三维激光扫描技术在测绘领域,其最基本的应用之一就是地形图绘制。基于扫描的精细点云可直接生成三维地形模型,自动提取等高线,同时可获取三维及二维数据资料。与传统测绘手段相比,三维激光扫描具有:效率高、细节丰富、成果形式多样。一次测量,地物、地形同时获得。

3D数字高程

三维地表模型

2. 规划、设计

项目规划设计阶段,首要工作是获得项目及周边的环境信息,环境信息越充分,规划设计工作越得心应手。采用三维激光扫描技术对项目目标环境进行扫描,取得的高精度三维模型,不仅直观、真实,而且包含有项目目标的全部空间信息,对规划设计工作可以起到事半功倍的效果。

在取得的三维空间信息的基础上,可以进一步进行日照分析、管道分析等。

3. 老旧建筑的维护、修复、测量

对于老旧建筑,采用三维扫描技术可以逆向绘制CAD图纸,辅助进行设计、施工、测量等工作。

三维激光扫描点云模型可以获得现状建筑的全面数据。根据点云模型返画CAD图可获得高精度的设计图纸。

4. 工程测量

由于具有高精度、扫描数据全面的特点,三维激光扫描技术可代替传统的工程测量,并在某些方面解决传统手段解决不了的难题,发挥独特的作用。

(1) 监理测量

三维激光扫描是真实场景的复制,资料具有客观可靠性,为监理隐蔽工程、重点部位工程质量提供有效依据,为避免日后的纠纷提供了客观依据。

(2) 竣工测量

竣工测量要求对实际施工完成的建筑物进行测量,基于对实景扫描及高精度的特点,三维激光扫描技术在对异形建筑测量等方面,可以发挥独特的优势。

(3) 隧道测量

通过三维激光扫描仪进行测量,获取隧道表面海量数据点,可生成真实隧道模型,无论是超欠挖分析还是收敛变形分析,结果都更加精准。

数据全面,海量点云,还原隧道真实形态,细节也清晰可辨,数据可随意查看。

结果精准,可达毫米级的测量精度,准确反映隧道变化情况。

收敛变形分析。基于多期数据,可进行隧道收敛变形分析。

超欠挖分析。通过点云模型与设计模型进行对比,可自动生成超欠挖报告,得到各段超欠挖体积分析,同时也可在任意断面处查看形态对比。

5. 变形监测

由于三维激光扫描技术具有高精度的特点,在一定的条件控制下,精度可达到1毫米以内,三维激光扫描技术可以用来对变形进行监测。主要应用在建筑物变形监测、基坑变形监测、桥梁变形监测、隧道变形监测以及地表形变监测等方面。

建筑物变形监测

基坑变形监测

桥梁变形监测

6. 土方和体积测量

采用三维激光扫描仪对现场地形地貌进行扫描,获得现场高精度三维地形数据,对相关数据进行处理后可以计算出土方工程量或其它相关体积。

根据项目情况,采用地面三维激光扫描仪在不同站点进行扫描。

扫描后,现场原始地貌被真实、直观、精确记录。

根据需要可以处理出地形图、等高线、三维模型等各种数据成果。

现场标高点位数据可现场进行复核。

测量成果可进行存档,土方体积计算可采用方格网等方式进行复核,方便后续审计、结算。

7. 三维扫描+BIM应用

三维激光扫描与BIM均以三维模型为中心,两者存在天然的相关性。三维激光扫描是BIM应用中最基础的一个重要环节,对现场三维实际进行采集后与BIM进行结合,才能发挥BIM技术的应用价值。

(1) 三维扫描协助BIM进行逆向建模

通过三维激光扫描取得真实、精确点云模型。

采用相关软件辅助建立BIM模型。

在没有目标图纸资料的情况下,采用三维激光扫描建立BIM模型是最高效的手段。建筑建成后,即使有原始图纸资料,采用三维激光扫描建立的BIM模型更符合实际修建完成的建筑,方便后期的运营管理。

(2) 辅助装饰装修等二次设计

扫描取得的点云模型提供直观及全面的原始室内原始设计数据。

在真实模型基础上进行的装修设计更加完善、减少变更及返工。

在真实模型基础上进行幕墙设计可以提高设计精度和施工质量。

(3) 施工检测及验收

BIM模型可以指导施工,三维扫描模型可以描述真实情况,将两者进行对比,不仅可以发现施工偏差,还可以检测施工质量。

实际施工模型与设计BIM模型对比,可以检查施工偏差情况。

施工偏差及施工质量分析数据一目了然。

8. 工程存档及展示

在工程建设当中,有很多工程存档及项目展示的需要,采用三维激光扫描技术可以全面对工程进行存档,全方位对工程进行展示,满足工程后期结算、索赔,以及对样板工程进行展示的需要。

9. 钢结构检测

采用三维扫描技术将复杂零部件的三维尺寸精确进行扫描,并将得到的点云与设计模型做精确地三维偏差分析,从而分析出零部件与设计模型的偏差,检测制作质量。

无接触式自动测量,高效快捷。

海量三维真彩色点云数据,即便是复杂异形钢构件也可全面测量记录。

毫米级测量精度,保证检测结果准确,采用色谱图反映实际制造成果与设计模型间偏差,显示更加全面直观。

10. 公路改扩建测量

在公路改扩建工程中,对已有旧路占地边线、路基、路面、桥涵的测量和现状描述对设计过程中的参考与决策尤为重要。采用车载激光扫描测量系统,每秒百万点的测量速率,40-60公里每小时的行驶速度,可快速获得路面点坐标信息及道路两侧地形情况。数据获取的质量和有效性高于传统的人工采集。

通过先进算法进行点云解算,点云精度可达5cm,满足公路改扩建测量精度要求。

成果丰富。海量点云可提取车道线,生成公路横断面、地形图等成果。

三、电力管理领域

对已建成的电力网络,需要有效地对其进行巡线管理,以确保电力的安全输送。

多平台激光雷达系统具有快速获取高精度激光点云和高分辨率数码影像的优点,可以获得输电线路相关距离测量的数据,适用于对新建线路的走向选择设计、对已建线路的危险点巡线检查、线路资产管理以及各种专业分析。

以高精度、高分辨率正射影像和激光点云数据为基础,结合架空送电线路设计业务需求,实现线路路径优化设计、杆塔优化设计的一体化全流程应用。基于剖面进行塔位优化,根据塔位坐标数据、塔基断面数据对线路各种指标进行统计分析。

利用无人机激光雷达系统获取的高精度点云可以检测建筑物、植被、交叉跨越等对线路的距离是否符合运行规范,线间距是否满足安全运行的要求;同时相机获取的高清晰度的影像,可以让巡检人员在室内进行线路设施设备和通道异常的判别。根据分类得到的电力线、植被和地面等分类的点云,可以计算出靠近电力线的植被并标记出来,可以起到预警的效果。

通过采集的高精度激光点云和高分辨率数码影像数据,处理成DOM、DEM,结合分类后的点云,可以实现电力线路三维建模,恢复线路走廊地形地貌、地表附着物(树木、建筑等)、线路杆塔三维位置和模型等,辅以线路设施设备参数录入,可实现线路资产管理。

四、影视制作领域

在影视拍摄中,一些特殊的场景和道具无法进行实拍,或者在一些大型动画的制作中,采用三维激光扫描技术对场景或道具进行扫描、建模,然后利用计算机进行后期制作,在大大减少人力投入的同时,效果也更显逼真。

五、结语

三维激光扫描技术的应用远不仅限于以上场景,由于与真实三维世界高度契合,符合大数据时代的技术发展趋势,三维激光扫描技术应用必定在相关领域中快速发展、大展身手,让我们拭目以待..

顶一下
(0)
0%
踩一下
(0)
0%