返回首页

成像雷达传感器(成像雷达传感器原理)

来源:www.haichao.net  时间:2023-01-14 03:22   点击:147  编辑:admin   手机版

1. 成像雷达传感器原理

光电传感器的优点

  1、检测距离长

  我们知道,市场上大部分的传感器其检测距离都是十分有限的。而新型的光电传感器在对射型中保留10m以上的检测距离等,便能实现其他检测手段。

  2、对检测物体的限制少

  由于光电传感器以检测物体引起的遮光和反射为检测原理,所以不像接近传感器等将检测物体限定在金属范围内,它可对玻璃、塑料、木材、液体等几乎所有物体进行检测。

  3、响应时间短

  大家都知道,光的传播速度是非常快的,因此基于光速传播的光电传感器的响应时间肯定也是非常短的。而且光电传感器的电路都是由电子零件构成的,所以是不包含任何机械性的工作时间的。

  4、分辨率高

  光电传感器能通过高级设计技术使投光光束集中在小光点,或通过构成特殊的受光光学系统,来实现高分辨率。也可进行微小物体的检测和高精度的位置检测。

  5、可实现非接触的检测

  光电传感器可以无须机械性地接触检测物体便能实现检测,因此不会对检测物体和传感器造成损伤。而且,这对于保护光电传感器本身也是非常有利的,能够有效延长其使用寿命。

  6、可实现对颜色的判别

  光电传感器通过检测物体形成的光的反射率和吸收率,根据被投光的光线波长和检测物体的颜色组合而有所差异。利用这种性质,可对检测物体的颜色进行检测。

  7、便于调整

  光电传感器在投射可视光的类型中,投光光束是眼睛可见的,便于对检测物体的位置进行调整。

2. 雷达传感器原理图

ACC(Adaptive Cruise Control)自适应巡航控制系统(以下简称ACC)是一种基于传感器识别技术而诞生的智能巡航控制,

自适应巡航系统的组成及原理

1、雷达传感器

在ACC系统中,测距雷达用于测量自车与前方车辆的车头距、相对速度、相对加速度,是自适应巡航控制系统中的关键设备之一,也是决定该系统造价的主要元件。其主要组成包括发射天线,接受天线,DPS(数字信号处理)处理单元,数据线等。

2.电子控制单元(ECU)

ACC系统中的核心部分

组成:和普通的单片机一样,由微处理器(CPU)、存储器(ROM、、RAM)、输入/输出接口(I/O)、模数转换器(A/D)以及整形、驱动等大规模集成电路组成。

作用:根据其内存的程序和数据对空气流量计及各种传感器输入的信息进行运算、处理、判断,然后输出指令。

3.其余组成部分:

巡航控制开关,车速设定器,车距设定器,状态显示器,报警器……

4.相互联系

雷达传感器探测主车前方的目标车辆,并向电控单元提供主车与目标车辆间的相对速度、相对距离、相对方位角度等信息。电控单元根据驾驶员所设定的安全车距及巡航行驶速度,结合雷达传送来的信息确定主车的行驶状态。

1). 当本车前方无行驶车辆时,本车将处于普通的巡航行驶状态,电控单元根据设定信息,可通过控制电子油门(发出指令给驱动电机,并由驱动电机控制节气门的开度,以调整可燃混合气的流量)对整个车辆的动力输出实现自动控制功能。

2). 当本车前方有目标车辆, 且目标车辆的行驶速度小于设定速度时,电控单元计算实车距和安全车距之比及相对速度的大小,选择减速方式;同时通过报警器向驾驶员发出警报,提醒驾驶员采取相应的措施。

当与前车之间的距离过小时,ACC控制单元可以通过与制动防抱死系统、发动机控制系统协调动作,使车轮适当制动,并使发动机的输出功率下降,以使车辆与前方车辆始终保持安全距离。电控单元还可以通过控制集成式电子真空助力器(EVB) 系统,在当驾驶员不制动时,EVB 开始工作时, 其中的电磁铁将代替驾驶员对真空助力器内部的真空阀和大气阀进行操作, 进而达到调节制动压力的目的。

3. 雷达成像技术原理

  雷达的原理  雷达(radar)原是“无线电探测与定位”的英文缩写。雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方问、速度等状态参数。雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。  雷达发射机产生足够的电磁能量,经过收发转换开关传送给天线。天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。  为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的传播时间。  根据电磁波的传播速度,可以确定目标的距离为:S=CT/2其中S:目标距离T:电磁波从雷达到目标的往返传播时间C:光速  雷达测定目标的方向是利用天线的方向性来实现的。通过机械和电气上的组合作用,雷达把天线的小事指向雷达要探测的方向,一旦发现目标,雷达读出些时天线小事的指向角,就是目标的方向角。两坐标雷达只能测定目标的方位角,三坐标雷达可以测定方位角和俯仰角。  测定目标的运动速度是雷达的一个重要功能,—雷达测速利用了物理学中的多普勒原理.当目标和雷达之间存在着相对位置运动时,目标回波的频率就会发生改变,频率的改变量称为多普勒频移,用于确定目标的相对径向速度,通常,具有测速能力的雷达,例如脉冲多普勒雷达,要比一般雷达复杂得多。  雷达的战术指标主要包括作用距离、威力范围、测距分辨力与精度、测角分辨力与精度、测速分辨力与精度、系统机动性等。  其中,作用距离是指雷达刚好能够可靠发现目标的距离。它取决于雷达的发射功率与天线口径的乘积,并与目标本身反射雷达电磁波的能力(雷达散射截面积的大小)等因素有关。威力范围指由最大作用距离、最小作用距离、最大仰角、最小仰角及方位角范围确定的区域。  雷达的技术指标与参数很多,而且与雷达的体制有关,这里仅仅讨论那些与电子对抗关系密切的主要参数。  根据波形来区分,雷达主要分为脉冲雷达和连续波雷达两大类。当前常用的雷达大多数是脉冲雷达。常规脉冲雷达周期性地发射高频脉冲。相关的参数为脉冲重复周期(脉冲重复频率)、脉冲宽度以及载波频率。载波频率是在一个脉冲内信号的高频振荡频率,也称为雷达的工作频率。  雷达天线对电磁能量在方向上的聚集能力用波束宽度来描述,波束越窄,天线的方向性越好。但是在设计和制造过程中,雷达天线不可能把所有能量全部集中在理想的波束之内,在其它方向上在在着泄漏能量的问题。能量集中在主波束中,我们常常形象地把主波束称为主瓣,其它方向上由泄漏形成旁瓣。为了覆盖宽广的空间,需要通过天线的机械转动或电子控制,使雷达波束在探测区域内扫描。  概括起来,雷达的技术参数主要包括工作频率(波长)、脉冲重复频率、脉冲宽度、发射功率、天线波束宽度、天线波束扫描方式、接收机灵敏度等。技术参数是根据雷达的战术性能与指标要求来选择和设计的,因此它们的数值在某种程度上反映了雷达具有的功能。例如,为提高远距离发现目标能力,预警雷达采用比较低的工作频率和脉冲重复频率,而机载雷达则为减小体积、重量等目的,使用比较高的工作频率和脉冲重复频率。这说明,如果知道了雷达的技术参数,就可在一定程度上识别出雷达的种类。  雷达的用途广泛,种类繁多,分类的方法也非常复杂。通常可以按照雷达的用途分类,如预警雷达、搜索警戒雷达、无线电测高雷达、气象雷达、航管雷达、引导雷达、炮瞄雷达、雷达引信、战场监视雷达、机载截击雷达、导航雷达以及防撞和敌我识别雷达等。除了按用途分,还可以从工作体制对雷达进行区分。  这里就对一些新体制的雷达进行简单的介绍。  双/多基地雷达  普通雷达的发射机和接收机安装在同一地点,而双/多基地雷达是将发射机和接收机分别安装在相距很远的两个或多个地点上,地点可以设在地面、空中平台或空间平台上。由于隐身飞行器外形的设计主要是不让入射的雷达波直接反射回雷达,这对于单基地雷达很有效。但入射的雷达波会朝各个方向反射,总有部分反射波会被双/多基地雷达中的一个接收机接收到。美国国防部从七十年代就开始研制、试验双/多基地雷达,较著名的“圣殿”计划就是专门为研究双基地雷达而制定的,已完成了接收机和发射机都安装在地面上、发射机安装在飞机上而接收机安装在地面上、发射机和接收机都安装在空中平台上的试验。俄罗斯防空部队已应用双基地雷达探测具有一定隐身能力的飞机。英国已于70年代末80年代初开始研制双基地雷达,主要用于预警系统。  相控阵雷达  我们知道,蜻蜓的每只眼睛由许许多多个小眼组成,每个小眼都能成完整的像,这样就使得蜻蜓所看到的范围要比人眼大得多。与此类似,相控阵雷达的天线阵面也由许多个辐射单元和接收单元(称为阵元)组成,单元数目和雷达的功能有关,可以从几百个到几万个。这些单元有规则地排列在平面上,构成阵列天线。利用电磁波相干原理,通过计算机控制馈往各辐射单元电流的相位,就可以改变波束的方向进行扫描,故称为电扫描。辐射单元把接收到的回波信号送入主机,完成雷达对目标的搜索、跟踪和测量。每个天线单元除了有天线振子之外,还有移相器等必须的器件。不同的振子通过移相器可以被馈入不同的相位的电流,从而在空间辐射出不同方向性的波束。天线的单元数目越多,则波束在空间可能的方位就越多。这种雷达的工作基础是相位可控的阵列天线,“相控阵”由此得名。  相控阵雷达的优点  (1)波束指向灵活,能实现无惯性快速扫描,数据率高;(2)一个雷达可同时形成多个独立波束,分别实现搜索、识别、跟踪、制导、无源探测等多种功能;(3)目标容量大,可在空域内同时监视、跟踪数百个目标;(4)对复杂目标环境的适应能力强;(5)抗干扰性能好。全固态相控阵雷达的可靠性高,即使少量组件失效仍能正常工作。但相控阵雷达设备复杂、造价昂贵,且波束扫描范围有限,最大扫描角为90°~120°。当需要进行全方位监视时,需配置3~4个天线阵面。  相控阵雷达与机械扫描雷达相比,扫描更灵活、性能更可靠、抗干扰能力更强,能快速适应战场条件的变化。多功能相控阵雷达已广泛用于地面远程预警系统、机载和舰载防空系统、机载和舰载系统、炮位测量、靶场测量等。美国“爱国者”防空系统的AN/MPQ-53雷达、舰载“宙斯盾”指挥控制系统中的雷达、B-1B轰炸机上的APQ-164雷达、俄罗斯C-300防空武器系统的多功能雷达等都是典型的相控阵雷达。随着微电子技术的发展,固体有源相控阵雷达得到了广泛应用,是新一代的战术防空、监视、火控雷达。  宽带/超宽带雷达  工作频带很宽的雷达称为宽带/超宽带雷达。隐身兵器通常对付工作在某一波段的雷达是有效的,而面对覆盖波段很宽的雷达就无能为力了,它很可能被超宽带雷达波中的某一频率的电磁波探测到。另一方面,超宽带雷达发射的脉冲极窄,具有相当高的距离分辨率,可探测到小目标。目前美国正在研制、试验超宽带雷达,已完成动目标显示技术的研究,将要进行雷达波形的试验。  合成孔径雷达  合成孔径雷达通常安装在移动的空中或空间平台上,利用雷达与目标间的相对运动,将雷达在每个不同位置上接收到的目标回波信号进行相干处理,就相当于在空中安装了一个“大个”的雷达,这样小孔径天线就能获得大孔径天线的探测效果,具有很高的目标方位分辨率,再加上应用脉冲压缩技术又能获得很高的距离分辨率,因而能探测到隐身目标。合成孔径雷达在军事上和民用领域都有广泛应用,如战场侦察、火控、制导、导航、资源勘测、地图测绘、海洋监视、环境遥感等。美国的联合监视与目标攻击雷达系统飞机新安装了一部AN/APY3型X波段多功能合成孔径雷达,英、德、意联合研制的“旋风”攻击机正在试飞合成孔径雷达。  毫米波雷达  工作在毫米波段的雷达称为毫米波雷达。它具有天线波束窄、分辩率高、频带宽、抗干扰能力强等特点,同时它工作在目前隐身技术所能对抗的波段之外,因此它能探测隐身目标。毫米波雷达还具有能力,特别适用于防空、地面作战和灵巧武器,已获得了各国的调试重视。例如,美国的“爱国者”防空导弹已安装了毫米波雷达导引头,目前正在研制更先进的毫米波导引头;俄罗斯已拥有连续波输出功率为10千瓦的毫米波雷达;英、法等国家的一些防空系统也都将采用毫米波雷达。  激光雷达  工作在红外和可见光波段的雷达称为激光雷达。它由激光发射机、光学接收机、转台和信息处理系统等组成,激光器将电脉冲变成光脉冲发射出去,光接收机再把从目标反射回来的光脉冲还原成电脉冲,送到显示器。隐身兵器通常是针对微波雷达的,因此激光雷达很容易“看穿”隐身目标所玩的“把戏”;再加上激光雷达波束窄、定向性好、测量精度高、分辨率高,因而它能有效地探测隐身目标。激光雷达在军事上主要用于靶场测量、空间目标交会测量、目标精密跟踪和瞄准、目标成像识别、导航、精确制导、综合火控、直升机防撞、化学战剂监测、局部风场测量、水下目标探测等。美国国防部正在开发用于目标探测和识别的激光雷达技术,已进行了前视/下视激光雷达的试验,主要探测伪装树丛中的目标。法国和德国正在积极进行使用激光雷达探测和识别直升机的联合研究工作

4. 雷达成像系统

雷达就是靠发电磁波,通过接受物体反射的回波,探测目标定位的装置。

发射一穿特定波形的信号。计算每个波形发射返回的时间差。用已知光速,乘以时间除以二就是目标的距离、老式的雷达有两套扫描发射接收天线。一个水平旋转,用以确定方向,一个上下磕头,确定海拔高度。方向准确回波最强。再老一点的雷达,连计算机都没有。将发生波形。与反射回波波形,投在屏幕上,看两者波形相位角大小。利用事先确定的常数标尺估算距离。也就是二战计算机发明以前的雷达。我们常常看见战斗影片中有雷达有一个屏幕,由两个波浪曲线组成,就是这个。而原型扫描屏幕,是信号经过再处理生成的屏幕。计算机发明以后,这种雷达已经淘汰,或改做气象雷达了。第二代雷达自然是配备了计算机技术,能够精确确定目标了,虽然可以探测到多个目标,但是只能跟踪一个目标。当前世界上主流采用的是第三代雷达。记相控阵雷达,与传统雷达原理是一样好的,但它的天线非常多像矩阵一样。如同昆虫的复眼,每个天线,只负责扫描一小片区域。接收机也是如此,个单元联合作战。通过计算机分析每个单元的信号特征,可精确定位锁定多个目标进行追踪(拦截导弹)。不需要像传统雷达一样时时刻刻都都要转动。而且抗干扰能力强,能够通过雷达特征,一定程度上区分敌我。相控阵雷达也不是技术顶点,新型的成像雷达,能够将雷达波聚焦投影在特殊的底片上成像。他的抗干扰能力更强,因为传统的雷达干扰是在雷达接收天线,只能能表示信号强弱的一维基础上进行的。而成像以后是平面或立体的图像,就像我们的眼睛一样很难被欺骗了。还有激光雷达等等。科学技术永无止境

5. 成像雷达的作用

雷达成像现在一般采用SAR体制,在飞机或卫星上装载雷达,照射地面待成像区域。

根据不同地物反射回波的强度和参数特征不同,可以成出图像。

6. 雷达传感器图片

雷达传感器电压高是采用超声波测距原理,在控制器的控制下由传感器发射超声波信号,当遇到障碍时,产生回波信号,传感器接收到回波信号后经控制器进行数据处理,判断出障碍物的位置,由显示器显示距离并发出其他警示信号.从而达到安全泊车的目地。倒车雷达又称泊车辅助系统,一般由超声波传感器(俗称探头)、控制器和显示器等部分组成。

7. 成像雷达传感器原理是什么

lds系列激光距离传感器原理:

LDS系列激光距离传感器 一、工作原理 LDS 系列激光距离传感器采用三角法激光测距原理。激光二极管发出的激 光经聚焦透镜后产生细光束投射到被测工件上形成光点,该光点经过物镜成像在 线性图像传感器(CCD)上。当工件表面位于传感器零点(对于LDS5010, 该点距离出光窗口。

8. 成像雷达传感器原理图解

触发原理不同,雷达是主动触发、红外是被动触发。根据多年市场经验,红外感应灯管比雷达的更精确些。

顶一下
(0)
0%
踩一下
(0)
0%