返回首页

双极性二极管伏安特性(二极管的伏安特性研究)

来源:www.haichao.net  时间:2023-01-06 09:57   点击:297  编辑:admin   手机版

1. 二极管的伏安特性研究

二极管的伏安特性曲线通常是横坐标是电压、纵坐标是电流,即 I--U曲线.

在这条曲线上某点处的切线的斜率,表示在该状态下二极管的电导(即电阻的倒数).

所以,二极管的电阻等于曲线某点切线斜率的倒数.在不同状态,对应不同的电阻值.

2. 二极管的伏安特性研究实验报告

二极管的伏安特性曲线通常是横坐标是电压、纵坐标是电流,即 I--U曲线.

在这条曲线上某点处的切线的斜率,表示在该状态下二极管的电导(即电阻的倒数).

所以,二极管的电阻等于曲线某点切线斜率的倒数.在不同状态下,对应不同的电阻值.

1、正向特性

特性曲线1的右半部分称为正向特性,由图可见,当加二极管上的正向电压较小时,正向电流小,几乎等于零。

只有当二极管两端电压超过某一数值Uon时,正向电流才明显增大。将Uon称为死区电压。死区电压与二极管的材料有关。一般硅二极管的死区电压为0.5V左右,锗二极管的死区电压为0.1V左右。

当正向电压超过死区电压后,随着电压的升高,正向电流将迅速增大,电流与电压的关系基本上是一条指数曲线。

由正向特性曲线可见,流过二极管的电流有较大的变化,二极管两端的电压却基本保持不变。通过在近似分析计算中,将这个电压称为开启电压。开启电压与二极管的材料有关

3. 二极管伏安特性研究实验

一.万用表检测普通二极管的极性与好坏。 检测原理:根据二极管的单向导电性这一特点性能良好的二极管,其正向电阻小,反向电阻大;这两个数值相差越大越好。若相差不多说明二极管的性能不好或已经损坏。测量时,选用万用表的“欧姆”挡。一般用R x100或R xlk挡,而不用Rx1或R x10k挡。因为Rxl挡的电流太大,容易烧坏R xlok的内电源电压太大,易击穿二极管. 测量方法:将两表棒分别接在二极管的两个电极上,读出测量的阻值;然后将表棒对换再测量一次,记下第二次阻值。若两次阻值相差很大,说明该二极管性能良好;并根据测量电阻小的那次的表棒接法(称之为正向连接),判断出与黑表棒连接的是二极管的正极,与红表棒连接的是二极管的负极。因为万用表的内电源的正极与万用表的“—”插孔连通,内电源的负极与万用表的“+”插孔连通。如果两次测量的阻值都很小,说明二极管已经击穿;如果两次测量的阻值都很大,说明二极管内部已经断路:两次测量的阻值相差不大,说明二极管性能欠佳。在这些情况下,二极管就不能使用了。 必须指出:由于二极管的伏安特性是非线性的,用万用表的不同电阻挡测量二极

管的电阻时,会得出不同的电阻值;实际使用时,流过二极管的电流会较大,因而二极管呈现的电阻值会更小些。 二.特殊类型二极管的检测。 ①稳压二极管。稳压二极管是一种工作在反向击穿区、具有稳定电压作用的二极管。其极性与性能好坏的测量与普通二极管的测量方法相似,不同之处在于:当使用万用表的Rxlk挡测量二极管时,测得其反向电阻是很大的,此时,将万用表转换到Rx10k档,如果出现万用表指针向右偏转较大角度,即反向电阻值减小很多的情况,则该二极管为稳压二极管;如果反向电阻基本不变,说明该二极管是普通二极管,而不是稳压二极管。 稳压二极管的测量原理是:万用表Rxlk挡的内电池电压较小,通常不会使普通二极管和稳压二极管击穿,所以测出的反向电阻都很大。当万用表转换到Rx10k挡时,万用表内电池电压变得很大,使稳压二极管出现反向击穿现象,所以其反向电阻下降很多,由于普通二极管的反向击穿电压比稳压二极管高得多,因而普通二极管不击穿,其反向电阻仍然很大。 ②发光二极管LED(Light EMitting Diode)。发光二极管是一种将电能转换成光能的特殊二极管,是一种新型的冷光源,常用于电子设备的电平指示、模拟显示等场合。它常采用砷化嫁、磷化嫁等化合物半导体制成。发光二极管的发光颜色主要取决于所用半导体的材料,可以发出红、橙、黄、绿等四种可见光。发光二极管的外壳是透明的,外壳的颜色表示了它的发光颜色。 发光二极管工作在正向区域,其正向导通(开启)工作电压高于普通二极管。外加正向电压越大,LED发光越亮,但使用中应注意,外加正向电压不能使发光二极管超过其最大工作电流,以免烧坏管子。 对发光二极管的检测方法主要采用万用表的Rx10k挡,其测量方法及对其性能的好坏判断与普通二极管相同。但发光二极管的正向、反向电阻

均比普通二极管大得多。在测量发光二极管的正向电阻时,可以看到该二极管有微微的发光现象。 ③光电二极管。光电二极管又称为光敏二极管,它是一种将光能转换为电能的特殊二极管,其管壳上有一个嵌着玻璃的窗口,以便于接受光线。光电二极管工作在反向工作区。无光照时,光电二极管与普通二极管一样,反向电流很小(一般小于o.1uA),光电管的反向电阻很大(几十兆欧以上);有光照时,反向电流明显增加,反向电阻明显下降(几千欧到几十千欧),即反向电流(称为光电流)与光照成正比。 光电二极管可用于光的测量,可当做一种能源(光电池)。它作为传感器件广泛应用于光电控制系统中。

光电二极管的检测方法与普通二极管基本相同。不同之处是:有光照和无光照两种情况下,反向电阻相差很大:若测量结果相差不大,说明该光电二极管已损坏或该二极管不是发光二极管

4. 二极管伏安特性研究实验数据

二极管的伏安特性曲线通常是横坐标是电压、纵坐标是电流,即 I--U曲线。

在这条曲线上某点处的切线的斜率,表示在该状态下二极管的电导(即电阻的倒数)。

所以,二极管的电阻等于曲线某点切线斜率的倒数。在不同状态,对应不同的电阻值

5. 二极管的伏安特性研究方法

二极管的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。二极管的正向特性:在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。

当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗二极管约为0.2V,硅二极管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗二极管约为0.3V,硅二极管约为0.7V),称为二极管的“正向压降”。

二极管反向特性:二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当普通二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,二极管会反向热击穿而损坏。

6. 二极管的伏安特性研究参考文献

正向导电,逆向不导电,也就是说正向理想处理是导线,逆向电阻无穷大,相当于断路

顶一下
(0)
0%
踩一下
(0)
0%