返回首页

用三极管做非门(二极管 与非门)

来源:www.haichao.net  时间:2022-12-21 00:06   点击:251  编辑:admin   手机版

1. 二极管 与非门

门电路逻辑在数字电路中,所谓“门”就是只能实现基本逻辑关系的电路。

最基本的逻辑关系是与、或、非,最基本的逻辑门是与门、或门和非门。

门电路逻辑可以用电阻、电容、二极管、三极管等分立原件构成,成为分立元件门。

也可以将门电路逻辑的所有器件及连接导线制作在同一块半导体基片上,构成集成逻辑门电路。

集成电路按照单位芯片面积集成门电路的个数,分为:

小规模集成电路(SSI)

中规模集成电路(MSI)

大规模集成电路(LSI)

超大规模集成电路(VLSI)

从制造工艺上来看,数字集成电路可分为:

双极型集成电路

单极型集成电路

2. 二极管实现非门

与非门的作用

与非门(英语:NAND gate)是数字电路的一种基本逻辑电路。若当输入均为高电平(1),则输出为低电平(0);若输入中至少有一个为低电平(0),则输出为高电平(1)。与非门可以看作是与门和非门的叠加。

与非门的作用是什么 与非门的用法和特点

与非门是与门和非门的结合,先进行与运算,再进行非运算。与非运算输入要求有两个,如果输入都用0和1表示的话,那么与运算的结果就是这两个数的乘积。如1和1(两端都有信号),则输出为0;1和0,则输出为1;0和0,则输出为1。与非门的结果就是对两个输入信号先进行与运算,再对此与运算结果进行非运算的结果。简单说,与非与非,就是先与后非。电工学里一种基本逻辑电路,是与门和非门的叠加,有两个输入和一个输出。CMOS电路中的逻辑门有非门、与门、与非门、或非门、或门、异或门、异或非门,施密特触发门、缓冲器、驱动器等与非门则是当输入端中有1个或1个以上是低电平时,输出为高电平;只有所有输入是高电平时,输出才是低电平与非门芯片:74ls系列:74ls00、74LS20,CMOS系列:CD4011

当两个输入端都为低电平时,对应的发光二极管亮;当两个输入端输入不同电

平时,对应的二极管亮;当两输入端为高电平时,对应的发光二极管不亮。 4.与非门传输延迟特性。 

实现与非门的非门功能并将两输出端串联进另一芯片的两输入端依此实现与非门传输延迟特性。

与非门的用法和特点

与非门的作用是什么 与非门的用法和特点

与非门的作用是什么 与非门的用法和特点

3. 二极管做非门

是的,我用过。5V电源,串一个330欧电阻,再接红外接收二极管的负极,二极管的正极接地(也就是反向工作)。从电阻与二极管负极节点引出信号,然后接两个非门(74HC14)整形后就可以送单片机处理了。

用的时候,当它收到红外信号,二极管会饱和导通,导通电压很小,所以输出节点会出现低电平;当没有红外信号时,二极管截止,所以输出节点的电压接近电源电压,呈现高电平。

4. 非门 二极管

工作原理

在下面的分析中假设输入高、低电平分别为3.6V和0.3V,PN结导通压降为0.7V。

①输入全为高电平3.6V(逻辑1)

如果不考虑T2的存在,则应有UB1=UA+0.7=4.3V。显然,在存在T2和T3的情况下,T2和T3的发射结必然同时导通。而一旦T2和T3导通之后,UB1便被钳在了2.1V(UB1=0.7×3=2.1V),所以T1的发射结反偏,而集电结正偏,称为倒置放大工作状态。由于电源通过RB1和T1的集电结向T2提供足够的基极电位,使T2饱和,T2的发射极电流在RE2上产生的压降又为T3提供足够的基极电位,使T3也饱和,所以输出端的电位为UY=UCES=0.3V, UCES为T3饱和压降。

可见实现了与非门的逻辑功能之一:输入全为高电平时,输出为低电平。

②输入低电平0.3V(逻辑0)

当输入端中有一个或几个为低电平0.3V(逻辑0)时,T1的基极与发射级之间处于正向偏置,该发射结导通,T1的基极电位被钳位到UB1=0.3+0.7=1V。T2和T3都截止。由于T2截止,由工作电源VCC流过RC2的电流仅为T4的基极电流,这个电流较小,在RC2上产生的压降也小,可以忽略,所以UB4≈VCC=5v,使T4和D导通,则有:UY=VCC-UBE4-UD=5-0.7-0.7=3.6V。

可见实现了与非门的逻辑功能的另一方面:输入有低电平时,输出为高电平。

5. 二极管可以实现非门吗

最基本的逻辑关系是与、或、非,最基本的逻辑门是与门、或门和非门。实现“与”运算的叫与门,实现“或”运算的叫或门,实现“非”运算的叫非门,也叫做反相器,等等。逻辑门是在集成电路(也称:集成电路)上的基本组件。组成逻辑门可以用电阻、电容、二极管、三极管等分立原件构成,成为分立元件门。

也可以将门电路的所有器件及连接导线制作在同一块半导体基片上,构成集成逻辑门电路。

简单的逻辑门可由晶体管组成。这些晶体管的组合可以使代表两种信号的高低电平在通过它们之后产生高电平或者低电平的信号。作用

6. 二极管实现与非门

与或非门电路是利用电子元件如二极管,三极管,可控硅等具有单向导电特性的元件组成的。给这些元件加上正向电压时,就是属于导通状态,刚给他们加上反向电压时,它们就是断开的。与非门是与门和非门的结合,先进行与运算,再进行非运算。与非运算输入要求有两个,如果输入都用0和1表示的话,那么与运算的结果就是这两个数的乘积。

如1和1(两端都有信号),则输出为0;1和0,则输出为1;0和0,则输出为1。与非门的结果就是对两个输入信号先进行与运算,再对此与运算结果进行非运算的结果。简单说,与非与非,就是先与后非。

7. 二极管搭建与非门

二极管逻辑电路(Diode logic circuit)是用晶体二极管作为操作开关的逻辑电路。二极管逻辑电路优点是电路形式简单,工作电压范围不受限制,但二极管逻辑电路中只有逻辑与门,或门,不能实现非门。

二极管逻辑电路(Diode logic circuit)是用晶体二极管作为操作开关的逻辑电路。二极管逻辑的优点是电路简单。但是并不是所有的逻辑功能都可以用二极管逻辑来实现的,二极管逻辑电路中只有逻辑与门,或门,不能实现非门。在几个二极管逻辑电路级联的时候会出现电压降的问题,所以二极管逻辑电路只能单独使用,不能级联。二极管逻辑的使用:二极管逻辑一般是用于构建二极管—晶体管逻辑(DTL)门电路中。

二极管单向导电性的作用为:

1、可以做开关元件:二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接通的开关,在反向电压作用下,电阻很大,处于截止状态,如同一只断开的开关.利用二极管的开关特性,可以组成各种逻辑电路;

2、对电流起保护作用:当二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这时候二极管就击穿了.二极管的单向导电性是指二极管在正常工作过程中,加正向电压,二极管导通,阻值很低;加反向电压,反向电流很小,二极管处于高阻截止。

二极管的单向导电性具体指:只允许电流由单一方向通过(称为顺向偏压),反向时阻断 (称为逆向偏压)。

单向导电性是二极管最重要的特性。利用单向导电性可以判断二极管的好坏,正偏时电阻值小,反偏时电阻值大,否则,二极管是损坏了的。

8. 二极管 非门

TTL与非门是TTL逻辑门的基本形式,典型的TTL与非门电路结构8-16所示。该电路由输入级、倒相级、输出级三部分组成。

与非门工作原理是:

输入级由多发射极三极管T1和电阻R1构成。可以把T1的集电结看成一个二极管,而把发射结看成与前者背靠背的两个二极管。这样,T1的作用和二极管与门的作用完全相同。

倒相级由三极管T2和电阻R2、R3构成。通过T2的集电极和发射极,提供两个相位相反的信号,以满足输出级互补工作的要求。

输出级是由三极管T3、T4,二极管D和电阻R4构成的“推拉式”电路。当T3导通时,T4和D截止;反之T3截止时,T4和D导通。倒相级和输出级的作用等效。

9. 与非门二极管

门电路:用以实现基本逻辑运算和复合逻辑运算的单元电路称为门电路(Gate Circuit)或逻辑门(Logic Gate)。门电路是数字集成电路中最基本的逻辑单元。

常用的门电路包括:与门、或门、非门、与非门、或非门、与或非门、异或门等。

集成电路(IC)从制造工艺可以分为:双极型、单极型和混合型三种。双极型就是TTL电路;单极型就是CMOS电路。

10. 非门是否可以用二极管来实现

在数字电路中,所谓“门”就是只能实现基本逻辑关系的电路。最基本的逻辑关系是与、或、非,最基本的逻辑门是与门、或门和非门。

逻辑门可以用电阻、电容、二极管、三极管等分立原件构成,成为分立元件门。也可以将门电路的所有器件及连接导线制作在同一块半导体基片上,构成集成逻辑门电路。

顶一下
(0)
0%
踩一下
(0)
0%