发电机 技术动态 电机 空压机 磁力泵 水泵 图说机械 增压泵 离心泵 电磁阀 阀门 机床 止回阀 基础机械 蝶阀 截止阀 球阀 纺织 减压阀 压缩机 压滤机 液压件 气缸 保温材料数控车床 打包机 贴标机 加工中心 激光打标机 包装机械 电焊机 印刷 换热器 工业机器人 铣床 冷水机 真空包装机 船舶 点胶机 柴油机 开槽机 模切机 制冷设备 蒸汽发生器 灌装机 氩弧焊机 吹瓶机 封边机 工业自动化 木工机械 焊接设备 激光焊接机 烫金机 套丝机 钢化炉 纸袋机 印刷机械 贴片机 工业烘干机 色选机 伺服电机 陶瓷机械设备 剪板机 折弯机 制砂机 压铸机 抛光机 注塑机 锅炉 3d打印机 模具 uv打印机 缝纫机 激光切割机 等离子切割机 破碎机 卷扬机 货架 精密空调 风机 高压风机 轴流风机 雕刻机 塑料托盘 温控器 工业洗衣机 管件 压力开关 孵化器 物流设备 冷却塔 真空泵 集装箱 燃气锅炉 超声波清洗机 齿轮箱 工控机 冷焊机 铣刨机 蒸汽清洗机 光刻机 弯管机 高压清洗机 塑料机械 搬运机器人 深井泵 橡胶机械 螺杆泵 挤出机 齿轮油泵 循环泵 渣浆泵 自吸泵 齿轮泵 泥浆泵 气泵 蠕动泵 屏蔽泵 转子泵 伺服系统 气压罐 法兰 空气冷却器 绞盘 计量泵 PLC控制柜 回转支承 增压器 旋压机 液压设备 机械臂 硫化机 步进电机 抛丸机 航空发动机 燃气轮机 螺杆压缩机 谐波减速器 液压泵 行星减速机 螺丝机 齿条 机械密封 回转窑 颗粒机 水轮机 粉末冶金制品 补偿器 无刷电机 堆垛机 燃气调压器 燃烧器 旋转接头 给料机 空分设备 钻井机 电子束焊机 数控铣床 工业炉
返回首页

数控车床报警0500(数控车床报警数据位数过多)

来源:www.haichao.net  时间:2023-02-14 05:18   点击:55  编辑:admin   手机版

一、数控车床报警数据位数过多

按off/set健里面有公英制转换,小数点后面四位是英制尺寸,把它改成公制就可以了,或者在MDI方式下输入G21(公制指令)G20为英制指令

二、广州数控gsk da98a驱动器,出现err4报警,如何处理?

err4位置超差接通控制电源时出现1,电路板故障。

①换伺服驱动器。

①电机U、V、W引线接错。

2,编码器电缆引线接错。

①正确接线。

①编码器故障。

①换伺服电机。

3,设定位置超差检测范围太小。

①增加位置超差检测范围。

4,位置比例增益太小。

①增加增益。

5,转矩不足。

①检查转矩限制值。

②减小负载容量。

③换更大功率的驱动器和电机。

三、数控车床报警代码108?

伺服108报警代码是表示编码器故障。内部参数乱或编码器线故障或伺服电机编码器故障。参数恢复出厂值或者更换线缆或者更换电机编码器,若故障依旧,则驱动器底板损坏,需要更换,如果故障还是不能排除,需要和生产厂家售后联系。

四、数控车床刀塔换刀未到位报警?

方法 把电机拆下来, 看电机转不, 不转查电路, 电机转先换下电机相序, 换完按上刀架还不转 ,刀架内部卡死 ,分解清洗。一定是计算机没得到相应刀具的应答信号。

现象:刀架一直是再松开旋转,没有夹紧旋转,直至报警后停止转动。

原因:一般是电线断了,或者是霍尔元件坏了,还有是小磁铁碎了。反正是没得到信号

五、30数控车床是什么意思?

指的是工件的最大回转半径.即30车床最大回转半径为60040车床最大回转半径为80050车床最大回转半径为1000所以61100,后面的三位数,是现在的型号,指的是直径1000

六、数控车床限位报警怎么解决?

解决方法如下

软限位报警:按住面板上的取消限位再迚行复位,报警解除后通过手轮摇过来,如果没有取消限位按键,那就需要在参数里更改限位数值;

硬限位报警:也就是导轨上的限位开关感应到了,有取消限位键的方法同上,如果没有则需要拆开防护板移动硬限位开关位置将拖板移回去后再装上限位开关。

七、串行主轴放大器错误?

SP1982 (S1)串行主轴放大器错误SP1999 主轴控制错误第一个原因,放大器缺相两个问题加起来,就是机台的6A或者其它保险烧断的可能性最大。操作机台过载现象。造成烧保险了。或者机台某地方短路。

八、数控机床的参考点丢失怎么办?

摘要: 这里详细介绍了发那克,三菱,西门子几种常用数控系统参考点工作原理、调整和设定方法,并举例说明参考点故障现象,解决方法。 关键词:参考点 相对位置检测系统 绝对位置检测系统 前言: 当数控机床更换、拆卸电机或编码器后,机床会有报警信息:编码器内机械绝对位置数据丢失了,机床回参考点后发现参考点和更换前发生了偏移,这就要求我们重新设定参考点,我们对了解参考点工作原理十分必要。 参考点是指当执行手动参考点回归或加工程序G28指令时机械所定位那一点,又名原点或零点。每台机床有一个参考点,需要也可以设置多个参考点,用于自动刀具交换(ATC)、自动拖盘交换(APC)等。G28指令执行快速复归点称为第一参考点(原点),G30指令复归点称为第二、第三或第四参考点,也称为返回浮动参考点。由编码器发出栅点信号或零标志信号所确定点称为电气原点。机械原点是基本机械坐标系基准点,机械零件一旦装配好,机械参考点也就建立了。使电气原点和机械原点重合,将使用一个参数进行设置,这个重合点就是机床原点。 机床配备位置检测系统一般有相对位置检测系统和绝对位置检测系统。相对位置检测系统关机后位置数据丢失,机床每次开机后都要求先回零点才可投入加工运行,一般使用挡块式零点回归。绝对位置检测系统电源切断时也能检测机械移动量,机床每次开机后不需要进行原点回归。关机后位置数据不会丢失,绝对位置检测功能执行各种数据核对,如检测器回馈量相互核对、机械固有点上绝对位置核对,具有很高可信性。当更换绝对位置检测器或绝对位置丢失时,应设定参考点,绝对位置检测系统一般使用无挡块式零点回归。 一: 使用相对位置检测系统参考点回归方式: 1、发那克系统: 1)、工作原理: 当手动或自动回机床参考点时,首先,回归轴以正方向快速移动,当挡块碰上参考点接近开关时,开始减速运行。当挡块离开参考点接近开关时,继续以FL速度移动。当走到相对编码器零位时,回归电机停止,并将此零点作为机床参考点。 2)、相关参数: 参数内容 系统0i/16i/18i/21i0 所有轴返回参考点方式: 0. 挡块、 1. 无挡块1002.10076 各轴返回参考点方式: 0. 挡块、 1. 无挡块1005.10391 各轴参考计数器容量18210570~0575 7570 7571 每轴栅格偏移量18500508~0511 0640 0642 7508 7509 是否使用绝对脉冲编码器作为位置检测器: 0. 、1. 是 1815.50021 7021 绝对脉冲编码器原点位置设定:0. 没有建立、 1. 建立1815.40022 7022 位置检测使用类型:0.内装式脉冲编码器、1. 分离式编码器、直线尺1815.10037 7037 快速进给加减速时间常数16200522 快速进给速度14200518~0521 FL速度14250534 手动快速进给速度14240559~0562 伺服回路增益18250517 3)、设定方法: a、 设定参数: 所有轴返回参考点方式=0; 各轴返回参考点方式=0; 各轴参考计数器容量,电机每转回馈脉冲数作为参考计数器容量设定; 是否使用绝对脉冲编码器作为位置检测器=0 ; 绝对脉冲编码器原点位置设定=0; 位置检测使用类型=0; 快速进给加减速时间常数、快速进给速度、FL速度、手动快速进给速度、伺服回路增益依实际情况进行设定。 b、 机床重启,回参考点。 c、 机床参考点与设定前不同,重新调整每轴栅格偏移量。 4)、故障举例: 一台0i-B机床X轴手动回参考点时出现90号报警(返回参考点位置异常)。 a、机床再回一次参考点,观察X轴移动情况,发现刚开始时X轴快速移动,速度很慢; b、检测诊断号#300,<128; d、 检查手动快速进给参数1424,设定正确; e、 检查倍率开关ROV1、ROV2信号,发现倍率开关坏,更换后机床正常。 2、三菱系统: 1)工作原理: 机床电源接通后第一次回归参考点,机械快速移动,当参考点检测开关接近参考点挡块时,机械减速并停止。然后,机械参考点挡块后,缓慢移动到第一个栅格点位置,这个点就是参考点。回参考点前,设定了参考点偏移参数,机械到达第一个栅格点后继续向前移动,移动到偏移量点,并把这个点作为参考点。 2)、相关参数: 参数内容 系统M60 M64 快速进给速度2025 慢行速度2026 参考点偏移量2027 栅罩量2028 栅间隔2029 参考点回归方向2030 3)、设定方法: a、设定参数: 参考点偏移量=0 栅罩量=0 栅间隔=滚珠导螺快速进给速度、慢行速度、参考点回归方向依实际情况进行设定。 b、重启电源,回参考点。 C、|报警/诊断|→|伺服|→|伺服监视(2)|,计下栅间隔和栅格量值。 d、计算栅罩量: 当栅间隔/2<栅格量时,栅罩量=栅格量-栅间隔/2 当栅间隔/2>栅格量时,栅罩量=栅格量+栅间隔/2 e、把计算值设定到栅罩量参数中。 f、重启电源,再次回参考点。 g、重复c、d过程,检查栅罩量设定值是否正确,否则重新设定。 h、需要,设定参考点偏移量。 4)、故障举例: 一台三菱M64系统钻削中心,Z轴回参考点时发生过行程报警。 a、 检查参考点检测开关信号,当移动到参考点挡块位置时,能够从“0”变为“1”; b、 检查栅罩量参数(2028),正常; 检查参考点偏移量参数(2027),正常; 检查参考点回归方向参数(2030),和其它同型号机床核对,发现由反方向“1”变成了同方向“0”,改正后,重启回参考点,正常。 3、西门子系统: 1)、工作原理: 机床回参考点时,回归轴以Vc速度快速向参考点文件块位置移动,当参考点开关碰上挡块后,开始减速并停止,然后反方向移动,退出参考点挡块位置,并以Vm速度移动,寻找到第一个零脉冲时,再以Vp速度移动Rv参考点偏移距离后停止,就把这个点作为 2)、相关参数: 参数内容 系统802D/810D/840D 返回参考点方向MD34010 寻找参考点开关速度(Vc)MD34020 寻找零脉冲速度(Vm)MD34040 寻找零脉冲方向MD34050 定位速度(Vp)MD34070 参考点偏移(Rv)MD34080 参考点设定位置(Rk)MD341003、设定方法: a、设定参数: 返回参考点方向参数、寻找零脉冲方向参数挡块安装方向等进行设定; 寻找参考点开关速度(Vc)参数设定时,要求该速度下碰到挡块后减速到“0”时,坐标轴能停止挡块上,不要冲过挡块; 参考点偏移(Rv)参数=0 b、机床重启,回参考点。 C、机床参考点与设定前不同,重新调整参考点偏移(Rv)参数。 4、故障举例: 一台西门子810D系统,机床每次参考点返回位置都不一致,从以下几项逐步进行排查: a、 伺服模块控制信号接触不良; b、电机与机械联轴节松动; C、参数点开关或挡块松动; d、参数设置不正确; е、位置编码器供电电压不低于4.8V; f、位置编码器有故障; g、位置编码器回馈线有干扰; 最后查到参考点挡块松动,拧紧螺丝后,重新试机,故障排除。 二: 绝对位置检测系统: 1. 发那克系统: 1)、工作原理: 绝对位置检测系统参考点回归比较简单,参考点方式下,按任意方向键,控制轴以参考点间隙初始设置方向运行,寻找到第一个栅格点后,就把这个点设置为参考点。 2)、相关参数: 参数内容 系统0i/16i/18i/21i0 所有轴返回参考点方式: 0. 挡块、 1. 无挡块1002.10076 各轴返回参考点方式: 0. 挡块、 1. 无挡块1005.10391 各轴参考计数器容量18210570~0575 7570 7571 每轴栅格偏移量18500508~0511 0640 0642 7508 7509 是否使用绝对脉冲编码器作为位置检测器: 0. 、1. 是 1815.50021 7021 绝对脉冲编码器原点位置设定:0. 没有建立、 1. 建立1815.40022 7022 位置检测使用类型:0.内装式脉冲编码器、1. 分离式编码器、直线尺1815.10037 7037 快速进给加减速时间常数16200522 快速进给速度14200518~0521 FL速度14250534 手动快速进给速度14240559~0562 伺服回路增益18250517 返回参考点间隙初始方向 0. 正 1. 负10060003 7003 0066 3)、设置方法: a、设定参数: 所有轴返回参考点方式=0; 各轴返回参考点方式=0; 各轴参考计数器容量,电机每转回馈脉冲数作为参考计数器容量设定; 是否使用绝对脉冲编码器作为位置检测器=0 ; 绝对脉冲编码器原点位置设定=0; 位置检测使用类型=0; 快速进给加减速时间常数、快速进给速度、FL速度、手动快速进给速度、伺服回路增益依实际情况进行设定; b、机床重启,手动回到参考点附近; c、是否使用绝对脉冲编码器作为位置检测器=1 ; 绝对脉冲编码器原点位置设定=1; e、机床重启; f、 机床参考点与设定前不同,重新调整每轴栅格偏移量。 2、三菱系统(M60、M64为例): 1)、无挡块机械碰压方式: a、设定参数: #2049.= 1 无档块机械碰压方式; #2054 电流极限; b、选择“绝对位置设定”画面,选择手轮或寸动模式,(也可选择自动初期化模式); C、“绝对位置设定”画面,选择“可碰压”; d、#0绝对位置设定=1 , #2原点设定:以基本机械坐标为准,设定参考点坐标值; e、移动控制轴,当控制轴碰压上机械挡块,给定时间内达到极限电流时,控制轴停止并反方向移动。b步选择手轮或寸动模式,则控制轴反方向移动移动到第一栅格点,这个点就是电气参考点;b步选择“自动初期化”模式,则第a步还要设置 #2005碰压速度参数和 #2056接近点值,此时控制轴反方向以 #2005(碰压速度)移动到 #2056(接近点)值停止,再以 #2055(碰压速度)向挡块移动,给定时间内达到极限电流时,控制轴停止并以反方向移动到第一栅格点,这个点就是电气参考点; g、重启电源。 2)、无挡块参考点方式调整: a、设定参数: #2049 = 2 无挡块参考点调整方式; #2050 = 0 正方向、 = 1 负方向; b、选择“绝对位置设定”画面,选择手轮或寸动模式; c、“绝对位置设定”画面,选择“无碰压”方式; d、#0绝对位置设定=1 , #2原点设定:以基本机械坐标为准,设定参考点坐标值; e、把控制轴移动到参考点附近。 f、#1 = 1,控制轴以 #2050设置方向移动,达到第一个栅格点时停止,把这个点设定为电气参考点。 g、重启电源。 3、 西门子系统(802D、810D、840D为例): 1)、调试; a、设置参数: MD34200=0.绝对编码器位置设定; MD34210=0.绝对编码器初始状态; b、选择“手动”模式,将控制轴移动到参考点附近; c、输入参数:MD34100,机床坐标位置; d、激活绝对编码器调整功能:MD34210=1.绝对编码器调整状态; e、按机床复位键,使机床参数生效; f、机床回归参考点; g、机床不移动,系统自动设置参数:34090. 参考点偏移量;34210. 绝对编码器设定完毕状态,屏幕上显示位置是MD34100设定位置。 2)、相关参数: 参数内容 系统 802D. 810D. 840D 参数点偏移量34090 机床坐标位置34100 绝对编码器位置设定34200 绝对编码器初始状态; 0.初始 1.调整 2.设定完成 34210 相对位置检测系统参考点回归中,机床第一次参考点回归后,执行手动参考点回归或加工程序G28指令时机械移动到参考点挡块位置并不减速,继续高速定位到事先存内存中参考点。机床下载PCL程序时将导致参考点位置丢失,PCL调试完毕后,再调试绝对值编码器参考点回归设定

九、已知数控程序如何计算坐标?

  一般数控车床只有直线和圆弧插补功能。对于由直线和圆弧组成的平面轮廓,编程时数值计算的主要任务是求各基点的坐标。   

1.基点的含义    构成零件轮廓的不同几何素线的交点或切点称为基点。基点可以直接作为其运动轨迹的起点或终点。   

2.直接计算的内容  数控车床厂家 根据填写加工程序单的要求,基点直接计算的内容有:每条运动轨迹的起点和终点在选定坐标系中的坐标,圆弧运动轨迹的圆心坐标值。   基点直接计算的方法比较简单,一般可根据零件图样所给的已知条件用人工完成。即依据零件图样上给定的尺寸运用代数、三角、几何或解析几何的有关知识,直接计算出数值。在计算时,要注意小数点后的位数要留够,以保证足够的精度。

顶一下
(0)
0%
踩一下
(0)
0%