返回首页

thermo傅里叶变换红外光谱仪(傅里叶变换红外光谱分析仪)

来源:www.haichao.net  时间:2023-01-13 05:12   点击:195  编辑:admin   手机版

1. 傅里叶变换红外光谱分析仪

光源发出的光被分束器(类似半透半反镜)分为两束,一束经透射到达动镜,另一束经反射到达定镜。两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,最终得到透过率或吸光度随波数或波长的红外吸收光谱图。

2. 傅里叶变换红外光谱分析仪器

傅立叶红外光谱仪是一种用于环境科学技术及资源科学技术领域的分析仪器,于2015年12月11日启用。

主要功能

红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的分析 测定中都有十分广泛的应用。 红外光经过干涉仪变成干涉光,干涉光可以进行调制和控制,干涉光经过待测的样品,被样品中的有机物吸收,然后进入检测器进行检测,可以对样品做全谱区的检测,从而确认样品的分子结构信息。

3. 傅立叶红外光谱分析仪

光源发出的光被分束器(类似半透半反镜)分为两束,一束经透射到达动镜,另一束经反射到达定镜。两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,最终得到透过率或吸光度随波数或波长的红外吸收光谱图。

4. 傅里叶变换红外光谱分析仪在生物技术中的应用进展

一、原理不同

1、红外分光光度计:由光源发出的光,被分为能量均等对称的两束,一束为样品光通过样品,另一束为参考光作为基准。这两束光通过样品室进入光度计后,被扇形镜以一定的频率所调制,形成交变信号,然后两束光和为一束,并交替通过入射狭缝进入单色器中。

2、傅里叶红外光谱仪:是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪。

二、构成不同

1、红外分光光度计:探测器将上述交变的信号转换为相应的电信号,经放大器进行电压放大后,转入A/D转换单位,计算机处理后得到从高波数到低波数的红外吸收光谱图。

2、傅里叶红外光谱仪:由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。

三、应用不同

1、红外分光光度计:可广泛地应用在石油、化工、医药、环保、教学、材料科学、公安、国防等领域。

2、傅里叶红外光谱仪:广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。

5. 傅里叶红外变换光谱仪使用说明

可以将液体样品夹在两片CaF2玻片中,然后把它放置在光路中检测。

6. 傅里叶变换红外光谱分析仪的英文

频谱图 [pín pǔ tú]英文:Spectrum map声音频率与能量的关系用频谱表示概况——以横轴纵轴的波纹方式,记录画出各种信号频率的图形资料。常见的有振幅频谱图和相位频谱图。频谱图在机械故障诊断系统中用于回答故障的部位、类型、程度等问题。是分析振动参数的主要工具。在实际使用中,频谱图有三种,即线性振幅谱、对数振幅谱、自功率谱。

线性振幅谱的纵坐标有明确的物理量纲,是最常用的。

对数振幅谱中各谱线的振幅都作了对数计算,所以其纵坐标的单位是dB(分贝)。

这个变换的目的是使那些振幅较低的成分相对高振幅成分得以拉高,以便观察掩盖在低幅噪声中的周期信号。

自功率谱是先对测量信号作自相关卷积,目的是去掉随机干扰噪声,保留并突出周期性信号,损失了相位特征,然后再作傅里叶变换。

自功率谱图使得周期性信号更加突出。

7. 傅里叶变换红外光谱仪图片

1、供电电源:AC220V±10%;50±1Hz单相交流电。

  2、环境温度:15-35℃;空气相对湿度:45-80%RH。

  3、近红外光谱仪应置于固定的工作台上,不应有强震动源。

  4、室内无电磁干扰及有害有毒气体。

二、开机

  打开计算机电源开关,打开近红外光谱仪电源开关,电源指示灯(Power)亮,光谱仪开机预热1h,等近红外光谱仪稳定后再使用。

顶一下
(0)
0%
踩一下
(0)
0%