返回首页

电子示波器(电子示波器的使用实验原理)

来源:www.haichao.net  时间:2023-01-04 02:34   点击:73  编辑:admin   手机版

1. 电子示波器的使用实验原理

 示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。

示波器使用方法和步骤及相关注意事项

  示波器使用方法

  用示波器能观察各种不同电信号幅度随时间变化的波形曲线,在这个基础上示波器可以应用于测量电压、时间、频率、相位差和调幅度等电参数。下面介绍用示波器观察电信号波形的使用步骤。

  1、示波管和电源系统

示波器使用方法和步骤及相关注意事项

  1)电源(Power):示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。

  2)辉度(Intensity):旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。

  3)聚焦(Focus):聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。

  4)标尺亮度(Illuminance):此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。

  2、荧光屏

示波器使用方法和步骤及相关注意事项

  根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。根据输入通道的选择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“X1”位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“X10”位置时,被测信号衰减为1/10,然后送往示波器,从荧光屏上读出的电压值乘以10才是信号的实际电压值。

  3、垂直偏转因数和水平偏转因数

  每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。

  4、输入通道和输入耦合选择

示波器使用方法和步骤及相关注意事项

  1)输入通道选择-输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。

  选择通道1时,示波器仅显示通道1的信号;选择通道2时,示波器仅显示通道2的信号;选择双通道时,示波器同时显示通道1和通道2的信号。维修中以选择通道1或通道2为多。

  2)输入耦合方式输入耦合方式-交流(AC)、地(GND)、直流(DC)。

示波器使用方法和步骤及相关注意事项

  5、触发

示波器使用方法和步骤及相关注意事项

  (1)常态(NORM):无信号时,屏幕上无显示;有信号时,与电平控制配合显示稳定波形;

  (2)自动(AUTO):无信号时,屏幕上显示光迹;有信号时与电平控制配合显示稳定的波形;

  (3)电视场(TV):用于显示电视场信号;

  (4)峰值自动(P-PAUTO):无信号时,屏幕上显示光迹;有信号时,无需调节电平即能获得稳定波形显示。

  6、扫描方式(SweepMode)

示波器使用方法和步骤及相关注意事项

  扫描有自动(Auto)、常态(Norm)和单次(Single)三种扫描方式。

  举例:幅度和频率的测量方法(以测试示波器的校准信号为例)

  (1)将示波器探头插入通道1插孔,并将探头上的衰减置于“1”档;

  (2)将通道选择置于CH1,耦合方式置于DC档;

  (3)将探头探针插入校准信号源小孔内,此时示波器屏幕出现光迹;

  (4)调节垂直旋钮和水平旋钮,使屏幕显示的波形图稳定,并将垂直微调和水平微调置于校准位置;

  (5)读出波形图在垂直方向所占格数,乘以垂直衰减旋钮的指示数值,得到校准信号的幅度;

  (6)读出波形每个周期在水平方向所占格数,乘以水平扫描旋钮的指示数值,得到校准信号的周期(周期的倒数为频率);

  (7)一般校准信号的频率为1kHz,幅度为0.5V,用以校准示波器内部扫描振荡器频率,如果不正常,应调节示波器(内部)相应电位器,直至相符为止。

  示波器面板装置

示波器使用方法和步骤及相关注意事项

  示波器的面板按其位置和功能大概可以分为显示、垂直(Y轴)、水平(X轴)三大部分,接下来对这三部分面板装置分别加以介绍。

  1、显示部分

  显示部分包括电源开关、电源指示灯、辉度(调整光点亮度)、聚焦(调整光点或波形清晰度)、辅助聚焦(配合“聚焦”旋钮调节清晰度)、标尺亮度(调节坐标片上刻度线亮度)、寻迹(当按键向下按时,使偏离荧光屏的光点回到显示区域,从而寻到光点位置)和标准信号输出(1kHz、1V方波校准信号由此引出,加到Y轴输入端,用以校准Y轴输入灵敏度和X轴扫描速度)。

  2、垂直(Y轴)部分

  垂直(Y轴)部分包括显示方式选择开关(用以转换两个Y轴前置放大器YA与YB工作状态)、“DC-地-AC”Y轴输入选择开关(用以选择被测信号接至输入端的耦合方式)、“微调V/div”灵敏度选择开关及微调装置、“↑↓”Y轴位移电位器(用以调节波形的垂直位置)、“极性、拉YA”YA通道的极性转换按拉式开关、“内触发、拉YB”触发源选择开关和Y轴输入插座。

  3、水平(X轴)部分

  水平(X轴)部分包括“t/div”扫描速度选择开关及微调旋钮、“扩展、拉×10”扫描速度扩展装置、“→←”X轴位置调节旋钮、“外触发、X外接”插座、“触发电平”旋钮、“稳定性”触发稳定性微调旋钮(用以改变扫描电路的工作状态)、“内、外”触发源选择开关、“AC-AC(H)-DC”触发耦合方式开关、“高频-常态-自动”触发方式开关和“+、-”触发极性开关。

  示波器使用步骤

示波器使用方法和步骤及相关注意事项

  下面具体讲解使用示波器观察电信号波形的具体步骤:

  步骤一、选择Y轴耦合方式:根据被测电信号频率,将Y轴输入耦合方式选择“AC-地-DC”开关置于AC或DC;

  步骤二、选择Y轴灵敏度:根据被测电信号的峰峰值,将Y轴灵敏度选择“V/div”开关置于适当档级(在实际使用过程中,若无需读取被测电压值,则只需适当调节Y轴灵敏度微调旋钮,使得屏幕上显示所需高度波形即可);

  步骤三、选择触发信号来源与极性:通常将触发信号极性开关置于“+”或“-”档位上;

  步骤四、选择扫描速度:根据被测信号周期,将将X轴扫描速度“t/div”开关置于适当档级(在实际使用过程中,若无需读取被测时间值,则只需适当调节扫描速度“t/div”微调旋钮,使得屏幕上显示所需周期数波形即可);

  步骤五、输入被测信号:被测信号由探头衰减后通过Y轴输入端输入示波器。

  示波器注意事项

  (1)热电子仪器一般要避免频繁开机、关机,示波器也是这样。

  (2)作定量测量时,应先将示波器通电预热10分钟以上,使机中各元件在热稳定状态下工作,否则由于机内元件温度处于上升过程,影响测量结果。

  (3)如果发现波形受外界干扰,可将示波器外壳接地。

  (4)在观察荧屏上的亮斑并进行调节时,亮斑的亮度要适中,不能过亮。

  (5)“Y输入”的电压不可太高,以免损坏仪器,在最大衰减时也不能超过400V。

  (6)关机前先将辉度调节旋钮沿逆时针方向转到底,使亮度减到最小,然后再断开电源开关。

2. 电子示波器的使用实验原理道客阅读

1、原理:示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。 利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。 2、使用:示波器可以测量各种波形的电压幅度,既可以测量直流电压和正弦电压,又可以测量脉冲或非正弦电压的幅度。更有用的是它可以测量一个脉冲电压波形各部分的电压幅值,如上冲量或顶部下降量等。这是其他任何电压测量仪器都不能比拟的。 1、原理:示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测打在涂有荧光材料的屏幕上,可以产生小光斑(这是传统模拟示波器的工作原理)。 在被测信号的作用下,电子束就像笔尖,可以在屏幕上绘制被测信号瞬时值的曲线。示波器可以观察各种信号振幅随时间变化的波形曲线,也可以测试各种电量,如电压、电流、频率、相位差、调幅等。 2、使用:示波器可以测量各种波形的电压幅度,既可以测量直流电压和正弦电压,更有用的是它可以测量脉冲电压波形的各个部分的电压幅值,如脉冲或顶部压降。这是任何其他电压测量仪器都无法比拟的。

3. 数字示波器的使用实验原理

sds2302型数字存储示波器工作原理

数字存储示波器有别于一般的模拟示波器,它是将采集到的模拟电压信号转换为数字信号,由内部微机进行分析、处理、存储、显示或打印等操作。

这类示波器通常具有程控和遥控能力,通过GPIB接口还可将数据传输到计算机等外部设备进行分析处理。

其工作过程一般分为存储和显示两个阶段,在存储阶段;

首先对被测模拟信号进行采样和量化,经A/D转换器转换成数字信号后;

依次存入RAM中,当采样频率足够高时,就可以实现信号的不失真存储。

当需要观察这些信息时,只要以合适的频率把这些信息从存储器RAM中按原顺序取出,经D/A转换和LPE滤波后送至示波器就可以观察的还原后的波形。

如果正弦波与锯齿波电压的周期稍不同,屏上出现的是一移动的不稳定图形;

这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍,以致每次扫描开始时波形曲线上的起点均不一样所造成的。

为了获得一定数量的完整周期波形,示波器上设有“time/div"调节旋钮;

用来调节锯齿波电压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正弦波形。

当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示出完整周期的正弦波形;

但由于环境或其他因素的影响,波形会移动;

为此示波器内装有扫描同步电路,同步电路从垂直放大电路中取出部分待测信号;

输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步"。

如果同步电路信号从仪器外部输入,则称为“外同步"。

4. 电子示波器的使用实验原理图

示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中 的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。

5. 示波器的使用实验基本原理

示波器使用——实验报告的误差分析主要有以下几个方面

1、两台信号发生器不协调。

2、桌面振动造成的影响。

3、示波器上显示的荧光线较粗,取电压值时的荧光线间宽度不准,使电压值不准。

4、取正弦周期时肉眼调节两荧光线间宽度不准,导致周期不准。

5、机器系统存在系统误差。

6、fy选取时上下跳动,可能取值不准。

6. 电子示波器的使用实验原理实验报告

示波器原理主要利用模数转换进行模拟信号转速至信号的显示。

7. 电子示波器的使用的实验原理

双踪示波器定义

双踪示波器即将电压信号转化为可见的光信号投影在显示屏上的装置。双踪示波器具有两路输入端,可同时接入两路电压信号进行显示。在示波器内部,将输入信号放大后,使用电子开关将两路输入信号轮换切换到示波管的偏转板上,使两路信号同时显示在示波管的屏面上,便于进行两路信号的观测比较。

2、双踪示波器的基本结构

双踪示波器主要是由示波管,放大器,扫描和触发系统,电源四个部分组成。其中显示系统中的示波器的显示器件是阴极射线管,缩写为CRT。阴极射线管的基础是一个能产生电子的系统,称为电子枪。电子枪向屏幕发射电子。电子枪发射的电子经聚焦形成电子束,并打在屏幕中心的一点上。屏幕的内表面涂有荧光物质,这样电子束打中的点就发出光。

3、双踪示波器工作原理

电子枪被灯丝加热后发射电子。聚焦极将电子枪发射的电子聚焦为极细的电子束,可使波形显示清晰。加速极上加有较高的正电压,吸引电子脱离电子枪高速运动;显示屏上加有极高的正电压,吸引电子撞击在显示屏面上,使显示屏面涂的荧光材料发光。垂直偏转板和水平偏转板上加有偏转电压,偏转电压的极性和幅值控制电子束撞击显示屏面的位置。当偏转电压跟随输入信号变化时,就可以使电子束在屏面上“画”出信号波形。

双踪示波器具有两路输入端,可同时接入两路电压信号进行显示。在示波器内部,将输入信号放大后,使用电子开关将两路输入信号轮换切换到示波管的偏转板上,使两路信号同时显示在示波管的屏面上,便于进行两路信号的观测比较。

4、双踪示波器优点

双踪示波器操作简单:全部操作都在面板上可以找到,波形反应及时,数字示波器往往要较长处理时间。

双踪示波器垂直分辨率高:连续而且无限级,数字示波器分辨率一般只有8位至10位。

双踪示波器数据更新快:每秒捕捉几十万个波形,数字示波器每秒捕捉几十个波形。

双踪示波器实时带宽和实时显示:连续波形与单次波形的带宽相同,数字示波器的带宽与取样率密切相关,取样率不高时需借助内插计算,容易出现混淆波形。

5、双踪示波器的日常维护

1).双踪示波器存放条件

仪器在日常使用时,应保持干燥和清洁,不使用时,应罩上塑料外罩,以避免金属杂物和尘埃的进入,存放处应干燥和通风,在气候潮湿时,应放进干燥剂,

8. 电子示波器的使用实验原理视频

你可以直接测量信号发生器的输出端来测量、检查。 脉冲信号发生器的参数一般包括上升时间,脉宽,频率,幅值四个参数将信号接在示波器上上升时间通过减小

顶一下
(0)
0%
踩一下
(0)
0%