返回首页

用示波器观察波形时fy(用示波器观察波形时,如荧光屏上什么也看不到)

来源:www.haichao.net  时间:2023-01-16 22:56   点击:287  编辑:admin   手机版

1. 用示波器观察波形时,如荧光屏上什么也看不到

1、是通道的基线偏移过大,就是说,现在的0电平不在屏幕中心!这种情况可以把示波器的耦合打到GND的方式,触发方式为AUTO,此时调节垂直位移旋钮,将基线调节到屏幕的中间位置在测量信号。

2、同样,如果此时你的垂直灵敏度过低,信号的DC电平过大,也是观测不到信号的,这时候可以调节垂直位移,看看能不能将信号调到屏幕的显示位置,或者将基线调到中心后,输入耦合打到AC方式,看看有没有信号

3、触发电平不对,就是信号没有触发,调节触发电平看看有没有显示

2. 示波器的使用如果在荧光屏上看不到图像

将辉度(即亮度)调大。 把增益旋钮置最小位置。 调节y位移。 调节X位移。 核对输入通道。再看输入通道选择是否正确。 荧光屏的右上方标辉度调节旋钮,用来调节图象亮度;它下面标有聚焦调节旋钮和辅助聚焦调节旋钮。两者配合使用可使电子束聚成一细束,在屏上出现一个小亮点,使图象线条清晰。

3. 示波器实验思考题如果在荧光屏上看不到图像

1、查看亮度(加速极电压)旋钮是否处于较小位置;

2、加大Y轴输入的衰减量,可能是输入灵敏度过高、干扰信号使扫描线偏离出屏幕,或是将探针扣挂在面板的接地点上;

3、余辉时间须与X扫描配合,使扫描光点形成线状。

4. 如果示波器的荧光屏上显示的信号波形的幅度

垂直分辨率概念

用数字示波器测量模拟信号第一步就是用ADC(模数转换器)把探棒接收到的模拟信号转换成数字信号,ADC数模转换芯片的分辨率直接决定了示波器垂直方向上的采样精度。比如ADC是8位,那么垂直方向上的信号可以被切分成00000000~11111111一共2的8次方,256段。模数转换器的垂直分辨率,就是数字示波器的垂直分辨率,代表示波器将输入电压转换为数字值的精确程度。

数字示波器所显示的垂直分别率由什么决定

优先级从高到低

1.前端ADC的分辨率

2.显示屏分辨率:它决定了经过处理的信号,有多少可以被显示出来。比如ADC虽然可以在垂直方向上显示256段,但是可能显示屏的分辨率垂直只有240个像素点,那么有一部分点会被合并成1个像素显示。

3.插值算法:实际的示波器,上面显示的像素点不一定都是实际采样生成的,一部分是通过插值算法计算出来的虚拟的点,好的插值算法会使插值的点与实际的点差异比较小。

垂直精度

当我们用同一个示波器在不同垂直档位下测量同一信号时,得到的测量结果往往是不一样的。

比如我们测量一个2V的方波信号,在垂直档位为2V时,测出幅值可能为1.960V。

在垂直档位为500mV时,测出幅值为1.980V。

为什么会这样?因为它涉及到垂直分辨率的问题,假设当垂直档位为500mV/div时,示波器垂直方向有10格,则其垂直分辨率由ADC的分辨率决定,即为(500mV*10)/256=19.531mV,也就是ADC不能分辨小于19.531mV的电压信号。测量同一个信号,在垂直档位为2V/div的情况下,ADC能分辨的信号为(2000mV*10)/256=78.125mV,小于该电压值的信号是不能测量的,即数字测量仪器都是存在采集的量化误差的,ADC的位数越高,量化误差就会越小,但是它只能无限减小,并不能消除。

所以当我们在对波形进行测量时,尽量使波形占满示波器屏幕,目的就是为了提高垂直精度,使测量结果更准确。

通过改变算法来提高分辨率

数字示波器中ADC的位数越高,垂直分辨率越高,该分辨率由硬件决定,一旦确定无法改变。但示波器整个系统的有效位数形成的分辨率与前者不同,我们可以通过软件提高分辨率。

目前大部分的示波器对ADC采样后提高分辨率最常用的方法就是采用“平均”的做法。

在平均采样方式中,可先设置一个平均次数N,之后示波器会对采集的N段波形,将它们按照触发位置对齐,对N段波形进行平均运算,最终得到一段平均后的波形。

这种采样方式降低随机噪声的同时并没有损失带宽,示波器系统的分辨率就会提高,但是平均模式会经过较长的时间来响应变化的波形,以牺牲示波器的速度来换取较高的分辨率,而且由于其处理方式的特殊性,决定了它适用的波形信号只能是周期信号。

总结

示波器显示屏垂直方向上的分辨率本身就有限,另外测量高频信号时,幅度本身就不准确,在上限频率处甚至有30%的误差,而且垂直分辨率过高会提高模数转换时间,影响采样率,进而影响带宽,得不偿失。一般示波器的垂直分辨率是8位,高分辨率的示波器达12位,如果示波器模拟电路本身的精度没有提高,单纯追求ADC的分辨率是没有意义的。如果追求电压的准确度,应该使用万用表,示波器更主要的功能是观测波形的形状,测量准确度一般在2%以内,这种准确度应对绝大多数应用是完全游刃有余的。

5. 用示波器观察波形时如荧光屏上什么也看不到

 示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。

示波器使用方法和步骤及相关注意事项

  示波器使用方法

  用示波器能观察各种不同电信号幅度随时间变化的波形曲线,在这个基础上示波器可以应用于测量电压、时间、频率、相位差和调幅度等电参数。下面介绍用示波器观察电信号波形的使用步骤。

  1、示波管和电源系统

示波器使用方法和步骤及相关注意事项

  1)电源(Power):示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。

  2)辉度(Intensity):旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。

  3)聚焦(Focus):聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。

  4)标尺亮度(Illuminance):此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。

  2、荧光屏

示波器使用方法和步骤及相关注意事项

  根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。根据输入通道的选择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“X1”位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“X10”位置时,被测信号衰减为1/10,然后送往示波器,从荧光屏上读出的电压值乘以10才是信号的实际电压值。

  3、垂直偏转因数和水平偏转因数

  每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示

6. 示波器荧光屏上所观察到的波形实际上

由示波管的原理可知,一个直流电压加到一对偏转板上时,将使光点在荧光屏上产生一个固定位移,该位移的大小与所加直流电压成正比。

如果分别将两个直流电压同时加到垂直和水平两对偏转板上,则荧光屏上的光点位置就由两个方向的位移所共同决定

顶一下
(0)
0%
踩一下
(0)
0%