发电机 技术动态 电机 空压机 磁力泵 水泵 图说机械 增压泵 离心泵 电磁阀 阀门 机床 止回阀 基础机械 蝶阀 截止阀 球阀 纺织 减压阀 压缩机 压滤机 液压件 气缸 保温材料 数控车床 打包机 贴标机 加工中心 激光打标机 包装机械 电焊机 印刷 换热器 工业机器人 铣床 冷水机 真空包装机 船舶 点胶机 柴油机 开槽机 模切机 制冷设备 蒸汽发生器 灌装机 氩弧焊机 吹瓶机 封边机 工业自动化 木工机械 焊接设备 激光焊接机 烫金机 套丝机 钢化炉 纸袋机 印刷机械 贴片机 工业烘干机 色选机 伺服电机 陶瓷机械设备 剪板机 折弯机 制砂机 压铸机 抛光机 注塑机 锅炉 3d打印机 模具 uv打印机 缝纫机 激光切割机 等离子切割机 破碎机 卷扬机 货架 精密空调 风机 高压风机 轴流风机 雕刻机 塑料托盘 温控器 工业洗衣机 管件 压力开关 孵化器 物流设备 冷却塔 真空泵 集装箱 燃气锅炉 超声波清洗机 齿轮箱 工控机 冷焊机 铣刨机 蒸汽清洗机 光刻机 弯管机 高压清洗机 塑料机械 搬运机器人 深井泵 橡胶机械 螺杆泵 挤出机 齿轮油泵 循环泵 渣浆泵 自吸泵 齿轮泵 泥浆泵 气泵 蠕动泵 屏蔽泵 转子泵伺服系统 气压罐 法兰 空气冷却器 绞盘 计量泵 PLC控制柜 回转支承 增压器 旋压机 液压设备 机械臂 硫化机 步进电机 抛丸机 航空发动机 燃气轮机 螺杆压缩机 谐波减速器 液压泵 行星减速机 螺丝机 齿条 机械密封 回转窑 颗粒机 水轮机 粉末冶金制品 补偿器 无刷电机 堆垛机 燃气调压器 燃烧器 旋转接头 给料机 空分设备 钻井机 电子束焊机 数控铣床 工业炉
返回首页

伺服系统小说(伺服系统控制)

来源:www.haichao.net  时间:2023-01-26 23:30   点击:109  编辑:admin   手机版

1. 伺服系统控制

交流伺服控制系统开机密码是5858。

天剑PL三层密码、5858、2468、9300 天隆MA三层密码、5858、1234、4321、 注塑机:注塑机,又名注射成型机或注射机。

它是将热塑性塑料或热固性塑料利用塑料成型模具制成各种形状的塑料制品的主要成型设备。

注塑机能加热塑料,对熔融塑料施加高压,使其射出而充满模具型腔。

按照注射装置和锁模装置的排列方式,可分为立式、卧式和立卧复合式

2. 伺服系统控制原理

伺服电机是可以精确控制角位移和转速的电机。

工作原理:

伺服电机内部一般用永磁体做转子,由驱动器控制三相电流形成旋转变化的电磁场,转子在磁场的作用下旋转。

通过电机后端自带的编码器反馈信号给驱动器,驱动器根据反馈值和目标值进行比较,形成闭环控制,从而精确控制电机转动的角度。

伺服电机的精度取决于编码器的精度,编码器上有均匀分布的缝,一个缝为一线,线数越多,编码器精度越高,伺服电机精度也就越高。伺服电机工作时,每转动一个角度就会发出一个脉冲,这样驱动器发出的脉冲和编码器接收的脉冲可以形成呼应。

伺服电机可以实现很高的转速,日系伺服电机可达3000r/min,欧系可达6000r/min,而步进电机最高转速一般为500-600r/min。

伺服电机启动非常平稳,可以实现很大的加速度,启动迅速,一般只需几毫秒,而步进电机一般需要几百毫秒。交流伺服电机还具有共振抑制功能。

3. 伺服控制装置

是车辆的制动系统出现故障,比如刹车片过度磨损、进水等。可以继续驾驶看是否消失,如果一直显示,建议前往4S店进行读码排除故障。

以下是这套系统的相关介绍:

1、概述:该制动系统是在人力液压制动系统的基础上加设一套动力伺服系统而形成的。在正常情况下,制动能量大部分由动力伺服系统供给,而在动力伺服系统失效时,还可以完全依靠驾驶员供给。

2、类型:伺服制动系统可分为助力式和增压式两类。助力式又称直接操纵式,其特点是伺服系统控制装置即控制阀用制动踏板机构直接操纵,真空伺服气室产生的助力与踏板力共同作用于制动主缸,以助踏板力之不足。乘用车普遍采用真空助力伺服制动系统。

4. 伺服系统控制器

伺服控制器又称伺服驱动器、伺服放大器,是一种用于控制伺服电机的控制器,其功能类似于作用在普通交流电机上的变频器,属于伺服系统的一部分。

1、伺服控制器的用途

主要用于高精度定位系统。伺服电机一般由位置、速度和转矩控制,实现传动系统的高精度定位.它是目前传输技术的高端产品.

2、伺服控制器的结构

伺服驱动器均采用数字信号处理器(DSP)作为控制核心,可以实现更复杂的控制算法,实现数字化、网络化和智能化。智能功率模块(IPM)广泛应用于电力设备中。IPM集成了驱动电路,具有过电压、过电流、过热、欠压等故障检测和保护电路。主电路还增加了软启动电路,以减少启动过程对驱动器的影响。

3、伺服控制器工作原理

其次,介绍了伺服控制器的工作原理。功率驱动单元首先通过三相全桥整流电路对输入的三相电能进行整流,得到相应的直流电流。经过三相电源整流后,再通过三相正弦脉宽调制电压型逆变器变频驱动三相永磁同步交流伺服电机。动力传动单元的整个过程可以简单地说成是交-直-交的过程。整流单元(AC-DC)的主电路为三相全桥不控整流电路

5. 伺服控制系统百科

伺服系统其他含义

自动控制系统

伺服系统(servomechanism)又称随动系统,是用来精确地跟随或复现某个过程的反馈控制系统。伺服系统使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。它的主要任务是按控制命令的要求、对功率进行放大、变换与调控等处理,使驱动装置输出的力矩、速度和位置控制非常灵活方便。在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度、加速度的反馈控制系统,其作用是使输出的机械位移(或转角)准确地跟踪输入的位移(或转角),其结构组成和其他形式的反馈控制系统没有原则上的区别。

伺服系统最初用于国防军工, 如火炮的控制, 船舰、飞机的自动驾驶,导弹发射等,后来逐渐推广到国民经济的许多部门,如自动机床、无线跟踪控制等。

6. 伺服系统控制框图

数控系统是数字控制系统的简称,根据计算机存储器中存储的控制程序,执行部分或全部数值控制功能,并配有接口电路和伺服驱动装置的专用计算机系统。计算机数控(CNC)系统是用计算机控制加工功能,实现数值控制的系统。CNC系统根据计算机存储器中存储的控制程序,执行部分或全部数值控制功能,并配有接口电路和伺服驱动装置的专用计算机系统。CNC系统由数控程序、输入装置、输出装置、计算机数控装置(CNC装置)、可编程逻辑控制器(PLC)、主轴驱动装置和进给(伺服)驱动装置(包括检测装置)等组成。CNC系统的核心是CNC装置。由于使用了计算机,系统具有了软件功能,又用PLC代替了传统的机床电器逻辑控制装置,使系统更小巧,其灵活性、通用性、可靠性更好,易于实现复杂的数控功能,使用、维护也方便,并具有与上位机连接及进行远程通信的功能。基本构成目前世界上的数控系统种类繁多,形式各异,组成结构上都有各自的特点。这些结构特点来源于系统初始设计的基本要求和工程设计的思路。例如对点位控制系统和连续轨迹控制系统就有截然不同的要求。对于T系统和M系统,同样也有很大的区别,前者适用于回转体零件加工,后者适合于异形非回转体的零件加工。对于不同的生产厂家来说,基于历史发展因素以及各自因地而异的复杂因素的影响,在设计思想上也可能各有千秋,使之有利于系统工作的可靠性,促使系统的平均无故障率不断提高。 数控系统的基本原理和构成都是十分相似。 数控系统一般整个数控系统由三大部分组成,即控制系统,伺服系统和位置测量系统。 控制系统按加工工件程序进行插补运算,发出控制指令到伺服驱动系统;伺服驱动系统将控制指令放大,由伺服电机驱动机械按要求运动;测量系统检测机械的运动位置或速度,并反馈到控制系统,来修正控制指令。这三部分有机结合,组成完整的闭环控制的数控系统。 控制系统主要由总线、CPU、电源、存贮器、操作面板和显示屏、位控单元、可编程序控制器逻辑控制单元以及数据输入/输出接口等组成。还包括一个通讯单元,它可完成CNC、PLC的内部数据通讯和外部高次网络的连接。 伺服驱动系统主要包括伺服驱动装置和电机。位置测量系统主要是采用长光栅或圆光栅的增量式位移编码器。 硬件结构:数控系统的硬件由数控装置、输入/输出装置、驱动装置和机床电器逻辑控制装置等组成,这四部分之间通过I/O接口互连。数控装置是数控系统的核心,其软件和硬件来控制各种数控功能的实现。数控装置的硬件结构按CNC装置中的印制电路板的插接方式可以分为大板结构和功能模块(小板)结构;按CNC装置硬件的制造方式,可以分为专用型结构和个人计算机式结构;按CNC装置中微处理器的个数可以分为单微处理器结构和多微处理器结构。 (1)大板结构和功能模板结构 数控系统 1)大板结构   大板结构CNC系统的CNC装置由主电路板、位置控制板、PC板、图形控制板、附加I/O板和电源单元等组成。主电路板是大印制电路版,其它电路板是小板,插在大印制电路板上的插槽内。这种结构类似于微型计算机的结构。    2)功能模块结构    (2)单微处理器结构和多微处理器结构   1)单微处理器结构   在单微处理器结构中,只有一个微处理器,以集中控制、分时处理数控装置的各个任务。   2)多微处理器结构   随着数控系统功能的增加、数控机床的加工速度的提高,单微处理器数控系统已不能满足要求,因此,许多数控系统采用了多微处理器的结构。若在一个数控系统中有两个或两个以上的微处理器,每个微处理器通过数据总线或通信方式进行连接,共享系统的公用存储器与I/O接口,每个微处理器分担系统的一部分工作,这就是多微处理器系统。 软件结构:CNC软件分为应用软件和系统软件。CNC系统软件是为实现CNC系统各项功能所编制的专用软件,也叫控制软件,存放在计算机EPROM内存中。各种CNC系统的功能设置和控制方案各不相同,它们的系统软件在结构上和规模上差别很大,但是一般都包括输入数据处理程序、插补运算程序、速度控制程序、管理程序和诊断程序。    (1)输入数据处理程序:它接收输入的零件加工程序,将标准代码表示的加工指令和数据进行译码、数据处理,并按规定的格式存放。有的系统还要进行补偿计算,或为插补运算和速度控制等进行预计算。通常,输入数据处理程序包括输入、译码和数据处理三项内容。    (2)插补计算程序:CNC系统根据工件加工程序中提供的数据,如曲线的种类、起点、终点等进行运算。根据运算结果,分别向各坐标轴发出进给脉冲。这个过程称为插补运算。进给脉冲通过伺服系统驱动工作台或刀具作相应的运动,完成程序规定的加工任务。CNC系统是一边插补进行运算,一边进行加工,是一种典型的实时控制方式,所以,插补运算的快慢直接影响机床的进给速度,因此应该尽可能地缩短运算时间,这是编制插补运算程序的关键。    (3)速度控制程序:速度控制程序根据给定的速度值控制插补运算的频率,以保预定的进给速度。在速度变化较大时,需要进行自动加减速控制,以避免因速度突变而造成驱动系统失步。   (4)管理程序:管理程序负责对数据输入、数据处理、插补运算等为加工过程服务的各种程序进行调度管理。管理程序还要对面板命令、时钟信号、故障信号等引起的中断进行处理。    (5)诊断程序 :诊断程序的功能是在程序运行中及时发现系统的故障,并指出故障的类型。也可以在运行前或故障发生后,检查系统各主要部件(CPU、存储器、接口、开关、伺服系统等)的功能是否正常,并指出发生故障的部位。 基本分类运动轨迹分类: (1)点位控制数控系统 : 数控系统控制工具相对工件从某一加工点移到另一个加工点之间的精确坐标位置,而对于点与点之间移动的轨迹不进行控制,且移动过程中不作任何加工。这一类系统的设备有数控钻床、数控坐标镗床和数控冲床等。    (2)直线控制数控系统 :不仅要控制点与点的精确位置,还要控制两点之间的工具移动轨迹是一条直线,且在移动中工具能以给定的进给速度进行加工,其辅助功能要求也比点位控制数控系统多,如它可能被要求具有主轴转数控制、进给速度控制和刀具自动交换等功能。此类控制方式的设备主要有简易数控车床、数控镗铣床等。    (3)轮廓控制数控系统 :这类系统能够对两个或两个以上坐标方向进行严格控制,即不仅控制每个坐标的行程位置,同时还控制每个坐标的运动速度。各坐标的运动按规定的比例关系相互配合,精确地协调起来连续进行加工,以形成所需要的直线、斜线或曲线、曲面。采用此类控制方式的设备有数控车床、铣床、加工中心、电加工机床和特种加工机床等。 伺服系统分类;   按照伺服系统的控制方式,可以把数控系统分为以下几类:    (1)开环控制数控系统 :这类数控系统不带检测装置,也无反馈电路,以步进电动机为驱动元件。CNC装置输出的指令进给脉冲经驱动电路进行功率放大,转换为控制步进电动机各定子绕组依此通电/断电的电流脉冲信号,驱动步进电动机转动,再经机床传动机构(齿轮箱,丝杠等)带动工作台移动。这种方式控制简单,价格比较低廉,被广泛应用于经济型数控系统中。  (2)半闭环控制数控系统 :位置检测元件被安装在电动机轴端或丝杠轴端,通过角位移的测量间接计算出机床工作台的实际运行位置(直线位移),并将其与CNC装置计算出的指令位置(或位移)相比较,用差值进行控制,其控制框图如图4所示。由于闭环的环路内不包括丝杠、螺母副及机床工作台这些大惯性环节,由这些环节造成的误差不能由环路所矫正,其控制精度不如闭环控制数控系统,但其调试方便,可以获得比较稳定的控制特性,因此在实际应用中,这种方式被广泛采用。    (3)全闭环控制数控系统 :位置检测装置安装在机床工作台上,用以检测机床工作台的实际运行位置(直线位移),并将其与CNC装置计算出的指令位置(或位移)相比较,用差值进行控制。这类控制方式的位置控制精度很高,但由于它将丝杠、螺母副及机床工作台这些大惯性环节放在闭环内,调试时,其系统稳定状态很难达到。 功能水平分类:   (1)经济型数控系统 :又称简易数控系统,通常仅能满足一般精度要求的加工,能加工形状较简单的直线、斜线、圆弧及带螺纹类的零件,采用的微机系统为单板机或单片机系统,如:经济型数控线切割机床,数控钻床,数控车床,数控铣床及数控磨床等。    (2)普及型数控系统 :通常称之为全功能数控系统,这类数控系统功能较多,但不追求过多,以实用为准。    (3)高档型数控系统 :指加工复杂形状工件的多轴控制数控系统,且其工序集中、自动化程度高、功能强、具有高度柔性。用于具有5轴以上的数控铣床,大、中型数控机床、五面加工中心,车削中心和柔性加工单元等。 工作流程:   1、输入:零件程序及控制参数、补偿量等数据的输入,可采用光电阅读机、键盘、磁盘、连接上级计算机的DNC 接口、网络等多种形式。CNC装置在输入过程中通常还要完成无效码删除、代码校验和代码转换等工作。 2、译码:不论系统工作在MDI方式还是存储器方式,都是将零件程序以一个程序段为单位进行处理,把其中的各种零件轮廓信息(如起点、终点、直线或圆弧等)、加工速度信息(F 代码)和其他辅助信息(M、S、T代码等)按照一定的语法规则解释成计算机能够识别的数据形式,并以一定的数据格式存放在指定的内存专用单元。在译码过程中,还要完成对程序段的语法检查,若发现语法错误便立即报警。 3、刀具补偿:刀具补偿包括刀具长度补偿和刀具半径补偿。通常CNC装置的零件程序以零件轮廓轨迹编程,刀具补偿作用是把零件轮廓轨迹转换成刀具中心轨迹。目前在比较好的CNC装置中,刀具补偿的工件还包括程序段之间的自动转接和过切削判别,这就是所谓的C刀具补偿。 4、进给速度处理: 编程所给的刀具移动速度,是在各坐标的合成方向上的速度。速度处理首先要做的工作是根据合成速度来计算各运动坐标的分速度。在有些CNC装置中,对于机床允许的最低速度和最高速度的限制、软件的自动加减速等也在这里处理。 5、插补:插补的任务是在一条给定起点和终点的曲线上进行“ 数据点的密化 ”。插补程序在每个插补周期运行一次,在每个插补周期内,根据指令进给速度计算出一个微小的直线数据段。通常,经过若干次插补周期后 ,插补加工完一个程序段轨迹,即完成从程序段起点到终点的“数据点密化”工作。 6、位置控制:位置控制处在伺服回路的位置环上, 这部分工作可以由软件实现, 也可以由硬件完成。它的主要任务是在每个采样周期内,将理论位置与实际反馈位置相比较, 用其差值去控制伺服电动机。在位置控制中通常还要完成位置回路的增益调整、各坐标方向的螺距误差补偿和反向间隙补偿,以提高机床的定位精度。 7、I/0 处理:I/O 处理主要处理CNC装置面板开关信号,机床电气信号的输入、输出和控制(如换刀、换挡、冷却等) 。 8、显示:CNC装置的显示主要为操作者提供方便,通常用于零件程序的显示、参数显示、刀具位置显示、机床状态显示、报警显示等。有些CNC装置中还有刀具加工轨迹的静态和动态图形显示。 9、诊断: 对系统中出现的不正常情况进行检查、定位,包括联机诊断和脱机诊断。 数控系统所控制的是位置、角度、速度等机械量和开关量。

7. 伺服系统控制精度

不同品牌的伺服电机精度不同,大多使用日本伺服电机,领域不同精度也不同,取决于编码器分辨率,可达到1微米

8. 伺服系统控制电路图

以稳压器为例子,它的稳压电路原理是当输入电压或负载变化时,控制电路进行取样、比较、放大,然后驱动伺服的电机转动,使调压器碳刷的位置发生改变,通过自动调整线圈匝数比,从而保持输出电压的稳定。希望我的回答能对大家有所帮助吧!

9. 伺服系统控制一台穿梭小车

伺服电机从供电电源上区分可分为交流伺服电机和直流伺服电机。二者还是比较好选择的。一般的自动化设备,甲方都会提供标准的380V工业电源或220V电源,此时选择对应电源的伺服电机即可,免去电源类型的转换。

但有一些设备,比如立体仓库中的穿梭板、AGV小车等,由于本身的移动性质,大部分使用自带直流电源,所以一般使用直流伺服电机。

顶一下
(0)
0%
踩一下
(0)
0%