发电机 技术动态 电机 空压机 磁力泵 水泵 图说机械 增压泵 离心泵 电磁阀 阀门 机床 止回阀 基础机械 蝶阀 截止阀 球阀 纺织 减压阀 压缩机 压滤机 液压件 气缸 保温材料 数控车床 打包机 贴标机 加工中心 激光打标机 包装机械 电焊机 印刷 换热器 工业机器人 铣床 冷水机 真空包装机 船舶 点胶机 柴油机 开槽机 模切机 制冷设备 蒸汽发生器 灌装机 氩弧焊机 吹瓶机 封边机 工业自动化 木工机械 焊接设备 激光焊接机 烫金机 套丝机 钢化炉 纸袋机 印刷机械 贴片机 工业烘干机 色选机 伺服电机 陶瓷机械设备 剪板机 折弯机 制砂机 压铸机 抛光机 注塑机 锅炉 3d打印机 模具 uv打印机 缝纫机 激光切割机 等离子切割机 破碎机 卷扬机 货架 精密空调 风机 高压风机 轴流风机 雕刻机 塑料托盘 温控器 工业洗衣机 管件 压力开关 孵化器 物流设备 冷却塔 真空泵 集装箱 燃气锅炉 超声波清洗机 齿轮箱 工控机 冷焊机 铣刨机 蒸汽清洗机 光刻机 弯管机 高压清洗机 塑料机械 搬运机器人 深井泵 橡胶机械 螺杆泵 挤出机 齿轮油泵 循环泵 渣浆泵 自吸泵 齿轮泵 泥浆泵 气泵 蠕动泵 屏蔽泵 转子泵伺服系统 气压罐 法兰 空气冷却器 绞盘 计量泵 PLC控制柜 回转支承 增压器 旋压机 液压设备 机械臂 硫化机 步进电机 抛丸机 航空发动机 燃气轮机 螺杆压缩机 谐波减速器 液压泵 行星减速机 螺丝机 齿条 机械密封 回转窑 颗粒机 水轮机 粉末冶金制品 补偿器 无刷电机 堆垛机 燃气调压器 燃烧器 旋转接头 给料机 空分设备 钻井机 电子束焊机 数控铣床 工业炉
返回首页

伺服系统行业(伺服系统行业分析)

来源:www.haichao.net  时间:2023-01-28 15:52   点击:114  编辑:admin   手机版

1. 伺服系统行业分析

警,意味着这个伺服系统有故障。需要查明报警的原因,分析是误报,还是真有问题。是否屏蔽报警功能,也要依据故障检测的结果,才能做出决定的。

  1、没有无缘无故的报警,既然报警,就存在问题。根据故障表现、电路结构、工作原理,分析故障的可能性;

  2、可依据显示屏上故障代码,报警声的规律,对照维修资料判别问题发生的部位,有目标的检测电路中的具体器件,或其驱动电路工作状态,找到最终原因;

  3、是误报,检查其相应的传感器及信号电平正常否,更换坏件。没有应急配件,可临时屏蔽报警单元。若检测出某器件参数变动,更换新件;

  4、这种情况,找不到原因,盲目屏蔽,会让设备带病工作。随着故障的发展,若问题发生在自动保护单元或其失效,将会造成设备更大的损失。

2. 伺服电机行业分析

9个常见故障及对策!

1.轴承故障是最常见的电机故障之一。作为伺服电机中最主要的磨损件,一半以上伺服电机故障通常都归因于轴承问题。其具体表现多种多样,轻则电机转动时产生抖动、异响等,重则导致电机转轴卡死。值得注意的是,轴承故障如未得到及时的处理,通常还会带来次生损害。例如,轴承锈蚀的碎屑飞入制动器或电机编码器,造成更加严重的损失。

对策:①在使用伺服电机时不能长时间超过额定负载运行;②对于有轴电流的场合,增加导电刷或者采用含绝缘轴承的电机;③对伺服电机进行预防性维护。

2.对于电机应用(尤其是电机轴与机械设备的连接处)暴露在污染环境的场合,伺服电机通常需要配备油封。电机轴工业级骨架油封能够阻隔污染物(油类、杂质类)来延长电机寿命。轴密封较易磨损,需定期检查和替换。

对策:预防性维护;根据使用情况,建议每 3 个月替换一次,最长不超过 12 个月。

3.当绕组发生故障时,电机的一部分会发生短路,导致电机内部烧灼。

对策:①在使用伺服电机时不能长时间超过额定负载运行;②监控电流及电流随时间的积累;③监控绕组温度。

4.与异步电机不同,伺服电机的转子通常由永磁体构成。永磁体磁片通过贴面或者嵌入的方式,固定在电机的转轴上。

对策 :①在额定的负载下运行;②避免意外的碰撞。

5.电机反馈装置(旋转变压器、编码器等)将位置信号反馈给驱动器,从而使驱动器发出精确地电流以便进行精准的位置控制。多圈绝对值编码器则另具圈数记录的功能。采用后备电池技术的多圈绝对值编码器,依赖外部电池的电能记录转子圈数信息。而采用机械齿轮结构的多圈编码器,通过霍尔原理可以永久的记录圈数而无需维护,但成本相对较高。

对策:①取决于具体应用环境,电池的寿命通常为一年或数年。定期更换电池,可以减少这类意外风险。或者,更加一劳永逸的做法是,改用机械多圈的绝对值编码器。②电机的安装必须要可靠接地。对于有轴电流的情况,需要考虑使用绝缘轴承和绝缘编码器或者加装电机轴接地装置。③电机的安装过程中,例如加装皮带轮或联轴器时,如果不可避免敲击,可以考虑先将编码器拆下保存,待全部机械安装完成后再安装编码器。这样的话,需要在伺服驱动器中重新调整编码器的相位角。④另一种预防码盘故障的办法是,采用近年来开始流行的金属码盘编码器。与玻璃码盘相比,金属码盘的抗振动和抗冲击性能要提高很多,而在分辨率和精度上则可以与玻璃码盘旗鼓相当。

6.电机制动器是用于电源关闭时,将电机轴制动,防止转动;在制动器通电时,制动器处于释放状态。

对策:值得注意的是,作为电机的静止保持装置,制动器不应在电机通电的状态下,作为电机减速装置来使用,这样会加速制动器的磨损。

7.大部分中小功率的伺服电机都采用是自冷却。对于功率较大或特殊应用场合的伺服电机,也常见风冷或者液冷。

对策:①为风扇增加滤网并定期更换;②定期检查冷却装置。

8.这里包括接线端子盒和插座。

对策:使用时应多加小心,尽量避免意外。

9.连接电机轴需要抗扭刚性联轴器或加固型的皮带。电机工作一段时间后,频繁的加减速可导致联轴器或皮带变松或滑动,这时候应该再次检查。

对策:因此在安装或拆卸过程中,严禁使用工具敲击轴、联轴器或滑轮。尝试从电机轴上拆下任何设备时,应使用液压装置从轴端顶出。

3. 伺服系统的发展方向

伺服系统(servo mechanism)是使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。

伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。

4. 伺服系统行业分析报告

谐振频率,又叫共振频率。这个是系统环路决定的。(类似于LRC震荡电路)

伺服放大器电信号---马达---马达负载----编码器反馈-----伺服反馈位置采集----伺服内部比较器-----放大器电信号输出。 这样的环路,其中马达和马达的负载,放大器的处理速度决定了这个频率。

如果伺服输出的电信号在这个频率上,系统会产生共振,马达的实际运行会很差,甚至根本无法运行。

确认方法,伺服内部频率分析器分析,随着频率的上升,增益应该一直下降,出现增益突然变大的区域就是共振的频段。

应用中,在低刚性的系统中,比如驱动同步带,长金属棒,负载软,这种情况下,共振频率很低,容易发生这样的情况,导致系统运行不稳定,PID中P调不上去,那么系统刚性就低。

解决方法:机械设计的改善会明显增加效果,同步带拉力管理,连接刚度加强。

电气上,使用陷波滤波器(Notch filter),把这个频率带得电信号衰减掉。让其他频率的信号通过。

5. 伺服系统发展现状

伺服电机的优点:

1、精度:实现了位置,速度和力矩的闭环控制;克服了步进电机失步的问题;

2、转速:高速性能好,一般额定转速能达到2000~3000转;

3、适应性:抗过载能力强,能承受三倍于额定转矩的负载,对有瞬间负载波动和要求快速起动的场合特别适用;

4、稳定:低速运行平稳,低速运行时不会产生类似于步进电机的步进运行现象。适用于有高速响应要求的场合;

5、及时性:电机加减速的动态相应时间短,一般在几十毫秒之内;

6、舒适性:发热和噪音明显降低。伺服电机的缺点:伺服电机可以用在会受水或油滴侵袭的场所,但是它不是全防水或防油的。因此, 伺服电机不应当放置或使用在水中或油侵的环境中。扩展资料:直流伺服电机的基本特性:1、机械特性 在输入的电枢电压Ua保持不变时,电机的转速n随电磁转矩M变化而变化的规律,称直流电机的机械特性。2、调节特性 直流电机在一定的电磁转矩M(或负载转矩)下电机的稳态转速n随电枢的控制电压Ua变化而变化的规律,被称为直流电机的调节特性。3、动态特性 从原来的稳定状态到新的稳定状态,存在一个过渡过程,这就是直流电机的动态特性。交流伺服电机:交流伺服电机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。所以交流伺服电动机又称两个伺服电动机。在控制策略上,基于电机稳态数学模型的电压频率控制方法和开环磁通轨迹控制方法都难以达到良好的伺服特性,当前普遍应用的是基于永磁电机动态解耦数学模型的矢量控制方法,这是现代伺服系统的核心控制方法。

6. 伺服系统行业分析论文

我做过的都是小东西,分享一下直流电机的经验。

直流有刷电机控制起来相比步进电机更复杂,这也是有刷电机有更好的伺服控制器的原因。

有刷电机的控制应该是由电流->扭力->加速度->速度->位置。

通常的伺服控制里面有电流环、速度环和位置环三环控制系统。位置环主要是规划速度曲线,速度环和电流环进行pid控制。

举个我实际遇到过的例子,控制一个机构旋转,到达限位后断电,通过直流电机完成。可以看做直流电机的位置控制。

使用开环控制,既不加反馈,开始还好,但是时间长了轴承里的滚珠出现了问题,电压3.41v转不动,3.42v会使得转动力量过大,当到达规定限位后和其他机构发生碰撞反弹。

所以你问提高多少倍,我认为有没有反馈是对与错的问题,不是好与坏的问题。

当然,开环控制可以少很多传感器,少处理很多信号,少写很多代码。但是反馈控制是保证稳定的前提。一定要回答你的问题的话,我以为:无穷大。----------------------------------------但是看你提到视觉伺服,我所知道的一些应用,比如串联机械臂即使每一个关节都做了反馈,末端也可能不准,这时就可以用视觉伺服一类的东西反馈末端信息。

这种情况下,我认为(只是个人观点,要想知道具体数据请参考'IEEE最新的论文)应该有两个数量级以上的提高。

都答俩答案了 ^_^

顶一下
(0)
0%
踩一下
(0)
0%