返回首页

mag焊接可以焊接哪些材料(什么是MAG焊接)

来源:www.haichao.net  时间:2023-01-04 22:41   点击:275  编辑:admin   手机版

1. 什么是MAG焊接

MAG 焊接方法

焊接时应采用直流反接法,即工件接负极,焊枪接正极,此时电弧稳定,飞溅小。焊制膜式壁管屏的管子和扁钢一般为低碳钢,因此宜采用富氩加CO2,两元混合气体作为熔池保护气体即富氩 MAG 焊方法,氩气比例在85%左右。这样既可避免纯氩 MIG 焊由阴极斑点漂移引起的电弧小稳定,以及润湿性差、熔深浅、焊缝中间突起、成形差的缺点,又可克服纯CO2焊飞溅大、易出气孔的缺点。

2. 焊接MAG

二氧化碳气体保护电弧焊的保护气体是二氧化碳(有时采用CO2+Ar的混合气体).主要用于手工焊。由于二氧化碳气体的热物理性能的特殊影响,使用常规焊接电源时,焊丝端头熔化金属不可能形成平衡的轴向自由过渡,通常需要采用短路和熔滴缩颈爆断、因此,与MIG焊自由过渡相比,飞溅较多。但如采用优质焊机,参数选择合适,可以得到很稳定的焊接过程,使飞溅降低到最小的程度。由于所用保护气体价格低廉,采用短路过渡时焊缝成形良好,加上使用含脱氧剂的焊丝即可获得无内部缺陷的质量焊接接头。因此这种焊接方法目前已成为黑色金属材料最重要焊接方法之一。

优点

1、设计合理,自由调节。可根据不同金属材质选用不同档放电频率,以达到最佳修补效果。

2、热影响区域小。堆覆的瞬间过程中无热输入,因而无变形,咬边和残余应力。不会产生局部退火,修复后不需要重新热处理。

3、极小的焊补冲击 ,本焊机在焊补过程中克服了普通氩弧焊对工件周边产生冲击的现象。对没有余量的工件加工面也可进行修补。

4、修复精度高:堆焊厚度从几微米到几毫米,只需打磨,抛光。

5、熔接强高:由于充分渗透到工件表面材料产生极强的结合力。

6、携带方便:重量轻(28公斤),220V电源,无工作环境要求。

7、经济性:在现场立刻修复,提高生产效率,节省费用。

8、一机多用:可进行堆焊,表面强化等功能。通过调节放电功率和放电频率可获得要求 的堆焊和强化的厚度的光洁度。

9、堆焊层硬度及补材多样性。

MAG(Metal Active Gas Arc Welding)焊是熔化极活性气体保护电弧焊的英文简称。它是在氩气中加入少量的氧化性气体(氧气,二氧化碳或其混合气体)混合而成的一种混合气体保护焊。我国常用的是80%Ar+20%二氧化碳的混合气体,由于混合气体中氩气占的比例较大,故常称为富氩混合气体保护焊。

特点

采用活性混合气体作为保护气体具有下列作用:

(1)提高熔滴过渡的稳定性。

(2)稳定阴极斑点,提高电弧燃烧的稳定性。

(3)改善焊缝熔深形状及外观成形。

(4)增大电弧的热功率。

(5)控制焊缝的冶金质量,减少焊接缺陷。

(6)降低焊接成本。

MAG焊可采用短路过渡、喷射过渡和脉冲喷射过渡进行焊接,能获得稳定的焊接工艺性能和良好的焊接接头,可用于各种位置的焊接,尤其适用于碳钢、合金钢和不锈钢等黑色金属材料的焊接。

3. mag焊接是氩弧焊吗

氩弧焊可以焊接不锈钢、铁类五金金属。

氩弧焊按照电极的不同分为熔化极氩弧焊和非熔化极氩弧焊两种。

非熔化极

工作原理及特点:非熔化极氩弧焊是电弧在非熔化极(通常是钨极)和工件之间燃烧,在焊接电弧周围流过一种不和金属起化学反应的惰性气体(常用氩气),形成一个保护气罩,使钨极端部、电弧和熔池及邻近热影响区的高温金属不与空气接触,能防止氧化和吸收有害气体。从而形成致密的焊接接头,其力学性能非常好。

熔化极

工作原理及特点 :焊丝通过丝轮送进,导电嘴导电,在母材与焊丝之间产生电弧,使焊丝和母材熔化,并用惰性气体氩气保护电弧和熔融金属来进行焊接的。它和钨极氩弧焊的区别:一个是焊丝作电极,并被不断熔化填入熔池,冷凝后形成焊缝;另一个是采用保护气体,随着熔化极氩弧焊的技术应用,保护气体已由单一的氩气发展出多种混合气体的广泛应用,如以氩气或氦气为保护气时 称为熔化极惰性气体保护电弧焊(在国际上简称为MIG焊);以惰性气体与氧化性气体(O2,CO2)混合气为保护气体 时,或以CO2气体或CO2+O2混合气为保护气时,统称为熔化极活性气 体保护电弧焊(在国际上简称为MAG焊)。从其操作方式看,目前应用最广的是半自动熔化极氩弧焊和富氩混合气保护焊,其次是自动熔化极氩弧焊。

4. 什么叫mag焊接

气体保护焊是利用气体作为电弧介质并保护电弧和焊接区的电弧焊称为气体保护电弧焊,简称气体保护焊。气体保护焊分为:

1、非熔化极惰性气体保护焊(TIG)2、熔化极气体保护焊(GMA W)3、CO2气体保护焊4、管状焊丝气体保护焊(FCAW)5、熔化极气体保护焊包括惰性气体保护焊(MIG)6、氧化性混合气体保护焊(MAG)注意事项:1、气体保护焊电流密度大、弧光强、温度高,且在高温电弧和强烈的紫外线作用下产生高浓度有害气体,所以特别要注意通风。

2、引弧所用的高频振荡器会产生一定强度的电磁辐射。

3、弧焊使用的钨极材料中的牡、柿等稀有金属带有放射性,尤其在修磨电极时形成放射性粉尘。

5. MAG焊有哪几种方式

MIG焊是熔化极惰性气体保护焊。

MAG焊是熔化极活性气体保护焊。而气保焊根据保护气的种类属于MIG焊或者MAG焊。TIG就是我们通常所说的氩弧焊。它们的具体区别如下:

1、MIG焊和MAG焊都是熔化极氩弧焊,其区别主要是采用的保护气体不同,MIG焊采用的保护气体是Ar或Ar+He,而MAG焊采用的保护气体为惰性气体加少量氧化性气体。在基本不改变惰性气体电弧基本特性的条件下,以进一步提高电弧稳定性。

2、 MIG焊根据所用焊丝及焊接规范的不同,可采用短路过渡、大滴过渡、射流过渡、亚射过渡及脉冲射流过渡,生产效率比TIG焊高,焊接变形比TIG焊小,母材熔深大,填充金属熔敷速度快,易实现自动化,电弧燃烧稳定、熔滴过渡平稳、无剧烈飞溅,在整个电弧燃烧过程中,焊丝连续等速送进。可焊接所有金属,如碳钢、低合金钢,特别适合焊接铝及铝合金、镁及镁合金、钛及钛合金、铜及铜合金、不锈钢。板材厚度最薄1mm,也适合焊中、厚板,可全位置焊接。

3、 MAG焊可采用短路过渡、喷射过渡和脉冲喷射过渡,能提高熔滴过渡的稳定性,稳定阴极斑点,提高电弧燃烧的稳定性,增大电弧热功率,减少焊接缺陷及降低焊接成本,获得优良的焊缝质量。适用于碳钢、低合金钢和不锈钢的焊接。适合于全位置焊接。

6. mag焊接什么焊

MAG焊和MIG焊选择方法

焊接速度

01

在需要在短时间内大量生产的情况下,高速在成本效益方面可能很重要。但高焊接速度也意味着部件上的热影响区更小。这个区域是在焊缝区域形成的,在这里输入工件的热量会降低金属的性能。热量会使金属局部硬化,使其变脆,导致裂纹或断裂,并降低抗拉强度。因此,将引入母材的热量降至最低非常重要。

MIG/MAG焊接工艺焊接速度快,焊缝质量好,功能范围广。

应用案例:动态载荷如桥梁大梁,火车车厢,或振动机械的零件。

焊接环境

02

焊接工艺的选择取决于环境的影响。工件是否暴露在户外环境中,或者是否可以在保护其免受风和天气影响的同时进行焊接?

TIG和MIG/MAG工艺需要由单独供应的气体提供保护气体屏蔽。这只能在封闭空间内或通过遮蔽部件来保证,以便供应的保护气体不会被吹走。

室外焊接时,最好采用手工电弧焊方法。燃烧的涂层形成保护气体和熔渣,保护熔体不与环境空气发生化学反应。

手工电弧焊不需要保护气体,所以这个过程也可以在户外使用。

焊缝外观

03

由于焊缝清晰可见,完美的外观至关重要。通常需要平滑的鱼鳞纹焊缝外观和极其精细的纹理。这只能通过TIG工艺或MIG/MAG工艺的特殊功能实现,如MIG/MAG缝焊或CMT。在手工电弧焊中,焊缝外观取决于所用电极的类型。

采用TIG焊可获得特征性的焊缝外观。

需要使用特殊功能来再现的鱼鳞纹焊缝。此处使用了Fronius的MIG/MAG – CMT CycleStep 工艺。

焊缝质量

04

在焊缝质量至上的地方,TIG是首选。TIG焊缝具有最好的力学性能。MIG/MAG焊缝也可以达到非常高的质量。

然而,高质量的TIG焊缝在焊接前要求接头边缘的高纯度。它们必须完全清洁,即没有铁锈、油、油脂和任何其他杂质,才能使用TIG工艺。

TIG焊接工艺可产生极高质量的焊缝,但要求极为清洁,焊接速度较低。

工件厚度

05

除了上述对焊缝的要求外,工件厚度在选择焊接工艺时也起着一定的作用。厚度小于1毫米的工件不能用焊条焊接,但如果工件厚度大于4毫米,则认为TIG焊接不经济。另一方面,MIG/MAG工艺可用于从超轻钢板到实心钢板的任何材料。

7. mag焊接技术

目前,管道焊接常用的方法有焊条电弧焊(SMAW)、埋弧焊(SAW)、钨极气体保护焊( GTAW)、熔化极气体保护焊(GMAW)、药芯焊丝电弧焊(FCAW)和下向焊等几种。

(1)焊条电弧焊的优点是设备简单、轻便、操作灵活,可以适用于维修及装配中的短缝的焊接,特别是可以适用干难以达到的部位的焊接。缺点就是对焊工操作技术要求高,焊工培训费用大,劳动条件差,生产效率低,不适于特殊金属及薄板的焊接。焊条电弧焊配用相应的焊条可适用于大多数工业用碳钢、不锈钢、铸铁、铜、铝、镍及其合金的焊接。(2)埋弧焊可以采用较大的电流,在电弧热的作用下,一部分焊剂熔化成熔渣并与液态金属发生液态冶金反应。另一部分熔渣浮在金属熔池的表面,一方面可以保护焊缝金属,防止空气的污染,并与熔化金属产生物理化学反应,改善焊缝金属的成分及性能;另一方面还可以使焊缝金属缓慢冷却,防止裂纹、气孔等缺陷的产生。与焊条电弧焊相比,其最大的优点就是焊缝质量高,焊接速度快,劳动条件好。因此,它特别适用于大型工件的直缝及环缝的焊接,而且多采用机械化焊接。缺点是一般只适用于平缝和角缝的焊接,其他位置的焊接则需要用特殊装置以保证焊剂对焊缝区的覆盖和防止熔池金属的漏消;焊接时不能直接观察电弧与坡口的相对佗置,需要采用焊缝自动跟踪系统来保证焊炬对准焊缝不焊偏;使用电流较大,电弧的电场强度较高,电流小于100A时,电弧稳定性较差,不适宜焊接厚度小于1mm的薄件。埋弧焊已广泛用于碳钢、低合金结构钢和不锈钢的焊接。由于熔渣可以降低焊接接头的冷却速度,故某些高强度结构钢和高碳钢也可以采用埋弧焊进行焊接。(3)钨极气体保护焊由于能很好的控制热输入,所以它足连接薄板金属和打底焊的一种极好方法。这种方法几乎可以用于所有金属的焊接,尤其适用干焊接铝、镁这些能形成难熔氧化物的金属以及象钛、锫这些活泼金属:这种焊接方法的焊接质量高,但与其他电弧焊相比,其焊接速度较慢、生产成本高、受周围气流的影响较大,不适于室外操作。(4)熔化极气体保护焊通常使用的气体有氩气、氦气、二氧化碳或这些气体的混合气。以氩气、氮气为保护气时称为熔化极惰性气体保护焊(在国际上简称为MIG焊);以惰性气体与氧化性气体(O2、CO2)的混合气时,或以C02和C02+02的混合气为保护气时,统称为熔化极活性气体保护焊(在国际上简称为MAG焊)。熔化极气体保护焊主要优点是可以方便地进行各种位置的焊接,同时也具有焊接速度较快、熔敷率较高等优点。熔化极活性气体保护焊可以适用于大部分丰要金属的焊接,包括碳钢、合金钢。熔化极惰性气体保护焊适用于不锈钢、铝、镁、铜、钛、锆及镍合金。利用这种方法可以进行电弧点焊。(5)药芯焊丝电弧焊可以认为是熔化极气体保护焊的一种类型。其所使用的焊丝是药芯焊丝,焊丝的芯部装有各种组成成分的药粉。焊接时外加保护气体,主要是CO2气体,药粉受热分解或熔化,起着造气和造渣保护熔池、渗合金及稳弧等作用。药芯焊丝电弧焊不另外加保护气体时,叫做自保护药芯焊丝电弧焊。它是以药粉分解产生的气体作保护气体,这种焊接方法的焊丝干伸长度变化不会影响保护效果,其变化范围可较大。药芯焊丝电弧焊有以下优点:焊接工艺性能好,焊道成型美观;熔敷速度快、生产率高,可以进行连续地自动、半自动焊接;合金系统调整方便,可以通过金属外皮和药芯两种途径调节熔敷金属的化学成分;能耗低;综合成本低。缺点是制造设备复杂、制造工艺技术要求高、药芯焊丝保管要求高和焊丝很容易受潮。药芯焊丝电弧焊可以应用于大多数黑色金属各种厚度、各种接头的焊接。(6)下向焊是从国外引进的一种适用于管道环缝焊接的工艺方法。它是指在管道焊缝的顶端引弧,向下焊接的一种工艺方法。下向焊具有生产效率高、焊接质量好的优点。

8. MAG焊接工艺

CMT(冷金属 过渡技术)是一种全新的MIG/MAG焊接工艺。是Cold Metal Transfer的缩写。由于其热输入量比普通的MIG/MAG焊要低,因而命名为Cold。

许多材料无法承受焊接过程中持续不断的热量输入,为了避免熔滴穿透,实现无飞溅熔滴过渡和良好的冶金连接。就必须降低热输入量。而CMT技术实现了这种可能。在应用CMT技术的焊接过程中必须理解“冷”这个概念。它相对于传统的MIG\MAG焊接过程而言,电弧温度和熔滴温度确实比较“冷”。它的特点是冷热循环交替。

顶一下
(0)
0%
踩一下
(0)
0%