返回首页

医药分离纯化设备(药物分离与纯化技术)

来源:www.haichao.net  时间:2023-01-15 07:48   点击:275  编辑:admin   手机版

1. 药物分离与纯化技术

  酶分离纯化的一般原则是:保证酶的活性正常保持,不失活,避免在极端条件下操作,如有必要还要添加一定的保护剂。  虽然酶大多是蛋白质,但少数具有生物催化功能的分子并非为蛋白质,有一些被称为核酶的RNA分子也具有催化功能。此外,通过人工合成所谓人工酶也具有与酶类似的催化活性,包括人工合成的DNA。 有人认为酶应定义为具有催化功能的生物大分子,即生物催化剂。  酶的催化活性会受其他分子影响:抑制剂是可以降低酶活性的分子;激活剂则是可以增加酶活性的分子。有许多药物和毒药就是酶的抑制剂。酶的活性还可以被温度、化学环境(如pH值)、底物浓度以及电磁波(如微波)等许多因素所影响。

2. 药物分离与纯化技术期末考试试题

1 、制药工程与原料生产的阶段

  制药工程包含化学、中药和生物制药。因为药物的纯度与杂质的含量,同该药物的疗效、毒副作用和药物价格密切相关,因此无论是生物制药、化学合成制药,还是中药制药,它们的制药过程都包含两个阶段,即原料药的生产和制剂生产。

  生产原料药的第一阶段,主要是把基本的原料药利用化学反应合成、微生物发酵或酶催化反应(也就是生物制药),或提取(也就是中药制药)而得到所制取药物含有的成分的混合物;第二阶段主要是通过选择合适的分离技术,分离纯化反应所得到的产物,或者中草药粗品中包含的药物成分,从而制取出纯度高的、与药品标准相符合的原料药。

2 、常用的分离技术概述

  一般来说,在制药过程中常用的分离技术主要包括:固液萃取、超临界流体萃取、反胶团萃取、双水相萃取和沉析等。

  2.1 固液萃取技术

  所谓的固液萃取,主要是通过溶剂溶解固体物料中含有的可溶性物质,从而实现分离的技术,这一技术又被称为浸取。而最常用的一种溶剂就是水,就如同在泡茶、煎中药或者从甜菜里边提取糖时都需要以水作溶剂。随着工业的飞速发展以及人民生活水平的不断提高,固液萃取具有着越来越广泛的应用领域,例如从植物种子里边提取食用油、从有关的植物中提取中草药制剂,以及速溶咖啡、食品调味料和食品添加剂的生产等。大体上而言,所有的固液萃取都需要预处理原料,通常是粉碎原料,并将其制成细粒或薄片的状态。

  物料中含有的有用成分,也就是溶质,分散包含在不溶性固体(担体)里面,只有通过担体的细孔,溶剂才可以把溶质分离出来并且转移到固体外的溶液中,因此传质具有比较大的阻力。在粉碎固体物料以后,因为增大了与溶剂间的相互接触面积,缩短了一级扩散的距离,显着地提高了萃取的速率。但是如果粉碎得过于细,就会产生粉尘,同时在萃取的过程中增加固相的滞液量,从而导致在固液分离的过程中增加了困难,以及降低了萃取的效率。

  同时,在进行溶剂选择时要坚持以下原则:一是选择溶解度大的溶质,从而可以有效地节省溶剂的使用量;二是与溶质之间具有的沸点差要足够大,从而方便回收和利用;三是在溶剂中溶质具有较小的扩散阻力,也就是说具有较小的扩散系数和较小的黏度;四是溶剂要价格低廉、容易获得,没有毒性,腐蚀性较小。

  一般情况下,溶质的溶解度会随着上升的温度而增大,同时也会增大溶质的扩散系数。所以,升高温度能够使萃取速度得以加快;但是温度如果过高,应注意产生如蛋白质变性等不良的现象。

  2.2 超临界流体萃取技术

  超临界流体萃取主要是在温度较低的状态下,气体的压力不断增加时,气体会转化成液体;当增高温度时,会增大液体的体积,对某一特定的物质来说,总是存在一个临界温度(Tc) 和临界压力(Pc),高于这个固定的临界温度和压力后,物质就不会转化为液体或气体,这一点就被称为临界点。在临界点以外的范围,物质处于气态与液态之间,这一范围内的流体被称做超临界流体。超临界流体具有与气体相类似的较强的穿透力,以及与液体相类似的较大的密度与溶解度和良好的溶剂特性,可以利用其作萃取、分离的单体。

  采取超临界萃取方法对天然产物进行提取时,通常采用 CO2作为萃取剂。这主要是因为:第一,临界温度和压力比较低,从而具有温和的操作条件,能够很少地破坏有效成分;二是 CO2类似于水,属于廉价、无毒的有机溶剂;三是在使用的过程中,CO2具有无毒、无污染、稳定安全、不燃烧等优点,而且能够有效地避免产品被氧化;四是不残留有害溶剂。

  在超临界的状态下,CO2具有溶解的选择性。CO2作为超临界流体,对低分子、低极性、亲脂性、低沸点的成分的溶解性十分优异。对于 -OH,-COOH 等具有极性集团的化合物,极性集团越多,萃取就越发艰难,所以多元醇和酸,以及多羟基的芳香物质,都很难被超临界 CO2所溶解。对于高分子量的化合物而言,拥有越高的分子量,对其的萃取就越难,超过 500 分子量的高分子化合物几乎不能被溶解。而要萃取具有较大的分子量和较多的极性集团的中草药的有效成分,则需要把第三组分加入到有效成分和超临界 CO2组成的二元体系中,从而使原来有效成分的溶解度得以改变,在研究超临界液体萃取的过程中,一般把促使溶质溶解度改变的第三组分叫做夹带剂。通常而言,溶解性能很好的溶剂,也常常是很好的夹带剂,例如甲醇、乙醇等。

  2.3 反胶团萃取技术

  反胶团萃取属于一种处于发展过程中的生物分离技术。其本质仍然是液 - 液有机溶剂萃取,但不同于一般有机溶剂萃取,反胶团萃取在有机相中采用表面活性剂形成反胶团,进而在有机相内产生分散的亲水微环境,使存在于有机相内生物分子处于反胶团的亲水微环境中,消除了生物分子,尤其是在有机相中难以溶解的蛋白质类生物活性物质,或者在有机相中产生不可逆变性的现象。

  2.4 双水相萃取技术

  双水相体系在传统上指的是双高聚物双水相体系,其成相机理是因为高聚物分子具有空间阻碍作用,无法相互渗透,不能形成均一相,因此具有分离的倾向,在一定的条件下就能够分为二相。通常认为,两聚合物水溶液的憎水程度只要有所差异,就可发生混合时的相分离,而且具有越大憎水程度相差,就会形成越大的相分离的倾向。很多的聚合物可以形成双水相体系,其中聚乙二醇(PEG)/ 葡聚糖就属于典型的聚合物双水相体系。

  双水相萃取类似于有机相萃取的原理,都是根据在两相间物质的选择性分配。当具有不同的萃取体系性质时,进入双水相体系后的物质,因为其表面性质、电荷作用,以及存在各种力和环境因素产生的影响,其在上、下相中有着不同的浓度。

  2.5 沉析技术

  沉析技术就是采用沉析剂,降低在溶液中所需提取的生化物质或杂质的溶解度,而形成无定形固体沉淀的过程。基本主要原理是:依据各种物质所具有的结构差异性,来使溶液中的某些性质发生改变,进而改变有效成分的溶解度。

3 、结论

  除上述制药分离技术外,还有如精馏、膜分离和色谱分离技术等,本文不作具体分析。总之,制药分离技术在制药工程中是不可或缺的重要一环,所以只要企业必须掌握各种制药分离技术,针对特定目标药物,依照其自身具有的性质,以及其含有的杂质的特殊性质,选择相应的分离方法,才能够进行大规模的工业生产。

3. 药物分离与纯化技术名词解释

分离:将混合物中待用的成分与其他成分分离开来,是初步的提纯。如:蒸馏工业酒精时有一个馏分就是酒精和少量水的混合物。纯化:对分离提纯过的物质进一步提纯,获得纯净的物质。如:分离到的酒精和少量水的混合物用氧化钙处理后再蒸馏得到无水乙醇;蛋白质结晶等等。总之,提取、分离和纯化有点是递进的过程,物质一步一步更加纯净化。

4. 药物分离与纯化技术pdf

生物制药都是从生物体提取有药效的生物化学成分来合成药品的。所以要进行生物制药就需要生物分离技术从生物体,包括植物体和动物体提取有效成分;接着再利用生物纯化技术讲所提取的成分进行纯化,最终讲纯化后的有效生物成分制成药物。所以,生物制药是离不开生物分离和纯化技术的!

5. 药物分离与纯化技术论文

  生物化学与分子生物学专业主要是从微观即分子的角度来研究生物现象,涉及物理、化学、数学、生物学等多学科的交叉。生物化学与分子生物学渗透于生物学的其他专业之中,属于基础性研究专业。  专业介绍  生物化学与分子生物学专业是在多年开展生物化学、生物信息学、基因工程、发酵工程和分子生物学等课程教学,以及生化药物、基因工程药物、免疫学、植物与微生物相互作用、转基因抗逆植物等相关科研工作的基础上,以研究明确生物体的生物化学代谢过程为基础、利用分子生物学手段揭示其代谢变化的机理为生长点,重点开展资源生物活性物质例如药物、酶类、抗生素类、毒素类等的分离提纯、富集、结构鉴定、改造或创造,探讨免疫处理无脊椎动物和重要农作物激发并增强其潜在抗病、抗环境污染、抗旱等能力的的方法和分子机制,预测和证实一些特殊大分子物质的结构与功能,明确动物尤其是昆虫系统进化过程中的分子机理等,为大力推进相关学科的快速发展,尤其是为医药、食品、农业及资源物质的保存、开发与利用提供坚实的理论依据及技术基础。  培养目标  培养具备生物科学的基本理论、基本知识和基本技能,受到良好的专业技能训练;具备进一步攻读硕士研究生和博士研究生的良好潜质,同时具备运用所掌握的理论知识和技能的科学技术人才。  研究方向  生物化学与分子生物学专业目前具有四个稳定的研究方向,分述如下:  

1、生物化学与生物工程药物  采用先进的生物化学和基因工程技术研究具有潜在预防和治疗人类疾病的功能药物,包括采用生物化学分离技术从动物、植物、微生物中分离提纯具有药用功能的酶、蛋白质、肽、多糖、糖蛋白等有效成分,研究其生化性质及药理学活性,尤其是在溶解血栓、抗辐射、消炎和延缓衰老及免疫抗体方面的作用;利用基因重组技术将功能蛋白质基因克隆到原核或真核表达系统中,构建工程菌株、获得目标基因工程药物等。主要包括两方面:  (1)生物活性药物的获得,利用先进的生物技术,高效率分离纯化或制备与人类健康密切相关的生物活性药物(如溶血栓的纤溶酶、降血脂的多糖、抑癌作用的低分子量壳聚糖等),同时不断提高分离、纯化和鉴定方法的微量化和精细化,明确活性药物的性质、组分、结构以及相关基因和蛋白质序列,并通过基因克隆或定点突变获得优化或改造,不断提高产量或增强活性;(2)肿瘤标志物的发掘与鉴定,运用蛋白组学的先进方法通过肿瘤标志物与癌症病人的血清反应特征来实现癌症的早期诊断。  

2、分子免疫学:  本研究方向旨在建立使动物和植物获得对生物协迫和非生物协迫如病害、毒物、干旱、盐碱、低温等不利环境条件具有免疫能力或高抗能力的方法或技术体系,明确其免疫抗性的分子机制,同时探讨免疫应答过程中的信号分子及其作用方式,并对免疫制剂以及免疫疫苗进行研究与开发,以达到推广利用的目的;此外,利用分子生物学技术获得相关抗性功能基因,将其导入目标动物或植物体进行表达,以获得具有增强免疫力或高抗能力的新品种。主要包括两个方面:  (1)动物分子免疫:以家蝇和中国明对虾为对象,研究动物在抵抗病原体过程中的先天免疫应答机制,主要包括抗菌因子的作用及其产生、释放的信号通路和调控过程;(2)植物抗病性的免疫诱导:以马铃薯、草莓和棉花等为主要对象,研究利用动植物或微生物的活性物质预先诱导处理植物、或转入外源抗病基因并诱导其表达,使植物增强抗病性并促进植物生长和增产的方法、机理、以及田间实际应用的效果。  

3、分子遗传与行为学  本研究方向主要以DNA同源重组和基因敲除技术为基本手段,从动物行为、神经解剖、细胞、生化、分子等不同层次和多个水平上研究揭示动物体的嗅觉、生殖、肥胖、以及学习与记忆等各种行为的分子遗传学机制。  

4、遗传多样性与分子进化  本研究方向主要研究昆虫系统进化的分子机理与适应性进化。综合昆虫细胞核内、外遗传物质的分子进化信息,包括mt基因组全序列、核18S rDNA、28S rDNA全序列和功能基因Hox基因序列等蕴涵的信息、以及宏观形态学结果,探讨昆虫纲直翅目的系统进化、各类群之间的系统发生和演化关系。  课程介绍  高级生物化学  在分子水平上揭示生命物质的组成结构及运动规律;是现代生物科学领域内各学科共同需要的基础知识,本课程内容主要包括以下部分:(1)糖缀合物(2)蛋白质(蛋白质结构基本组件;蛋白质结构的层次体系,蛋白质结构的测定,蛋白质的降解,蛋白质的折叠等)(3)酶(4)生物膜与信号转导,同时将尽量结合最新进展,涵盖动态与前沿知识,并介绍生物化学领域的最新研究进展。  分子生物学  本课程首先介绍分子生物学的含义,它在生命科学中的位置、发展现状及展望以及DNA结构、复制、转录、翻译、调控、突变、修复和重组。同时兼顾学科发展动向,着重涉及当今分子生物学应用技术即分子克隆工具酶、 电泳技术、载体、DNA及RNA制备、构建DNA文库、遗传转化、基因表达、PCR、还介绍了蛋白质合成及分析。旨在使研究生了解现代分子生物学理论的新进展并为相关学科从分子水平上阐明问题提供知识和技术。  现代生物学综合实验  本课程重点培养学生应用生物学(尤其是生物化学与分子生物学)实验手段,从事生物有相关实验的综合实验能力。本课程欢迎学生结合研究方向,选择相关材料,有目的地从事本课程实验,但要求学生提前一学期与任课教师联系,以便作适当的准备和安排。内容包括两大部分即基因工程部分和蛋白质部分:基因序列的获取与PCR引物的设计;PCR法基因扩增技术;大肠杆菌感受态细胞的制备;外源基因的氯化钙法转化;质粒的碱裂解法小量提取;阳性克隆的酶切鉴定;目的蛋白的IPTG诱导表达;目的蛋白的分离纯化;SDS-PAGE测定蛋白质的相对分子量;目的蛋白的western-blot鉴定;目的蛋白ELISA检测等。  生物科学专题  本课程讲授糖生物学、核酸化学、蛋白质结构与功能、基因工程、蛋白工程和发酵工程等生物化学与分子生物学的最新研究进展。同时要求学生研读最新研究文献,并进行讨论,撰写进展报告等,使学生能够掌握本学科发展动态,做好科研选题。  生物统计学与软件应用  生物统计学是一门介于生物学与数理统计学之间的边缘学科,以数理统计方法研究和解决生物学问题,是现代生物学研究的重要手段之一。本课程主要介绍生物统计的基本原理和方法,内容涉及假设检验、方差分析、非参数检验、回归与相关分析等基本统计分析方法并采用上机操作练习为主的方法,介绍数据分析软件对试验或调查资料进行图表绘制和常用的统计分析。帮助学生从大量的数据中发现规律,发掘出蕴涵的信息。掌握常用数据分析软件的基本应用。  生物信息学  生物信息学是应用先进的数据管理技术、分析模型和计算软件对各种生物信息(特别是分子生物学信息)进行提取、存储、处理和分析,为探索复杂生命现象及其规律提供有力的工具。面向研究生开设的课程内容包括:生物信息学的发展趋势及其研究内容与方法;生物信息网络资源及常用的搜索工具;双序列比对;核酸及蛋白质数据库等  专业英语  本课程讲授生命科学领域内相关专业的英语知识。主要内容包括生物化学与分子生物学专业英语、遗传学专业英语、生态学专业英语、植物学专业英语、细胞生物学专业英语、微生物学专业英语等几个子专题。通过指导学生阅读有关专业的英语书刊及论文,使他们进一步提高外语文献资料的阅读和英文科技论文的写作能力。  分子生态学  分子生态学是应用现代分子生物学的原理、技术和方法,解决生命系统与环境系统相互作用的生态机理及其分子机制的一门新兴综合学科。本课程概述了分子生态学的产生背景、研究内容、研究方法和基本原理,分析分子生态学的研究及发展趋势。重点从基因系统生态、蛋白质适应、代谢调节、相互作用组学等方面讲述生态进化和生态适应的基础,并结合自己多年的研究成果,介绍有关作物分子栽培、化感生态、生物修复的分子机理和生物基因安全等方面的最新进展。  分子遗传学  本课程讲授分子遗传学的一些基本知识,通过学习,让学生了解遗传物质在生命系统中的储存、复制、表达及调控过程。主要内容包括遗传物质的分子结构和性质,基因组和染色体,DNA的复制、修复和突变,DNA的转录和翻译,原核及真核生物基因表达调控的分子机理,遗传重组与转座等。通过本课程的学习,可以使学生对遗传的分子本质及调控机理有一个全面的了解,为科学研究工作打下坚实的基础。  植物营养的分子遗传基础  植物营养的分子遗传基础是探索关于植物营养学与植物分子遗传学交叉点的理论、方法的最新研究进展。其研究目标是以植物分子遗传的原理和方法改良植物营养性状,从生物学途径解决农业生产中的土壤、植物营养问题。本课程将结合实际应用研究,主要介绍(1)植物营养分子遗传研究进展;(2)植物营养性状的分子遗传学改良原理;(3)植物适应氮素营养胁迫的分子遗传学特性;(4)植物适应磷素营养胁迫的分子遗传学特性;(5)植物适应钾素营养胁迫的分子遗传学特性;(6)植物适应铁、铜、锰、锌、硼等微量元素营养胁迫的分子遗传学特性;(7)植物对铝、铅、汞、镉、砷等毒害的分子应答。以助于学生掌握植物营养的分子遗传的基础知识、研究方法并了解最新进展。  植物生态学  植物生态学是研究植物与环境相互关系规律的科学,是生态学中发展得最为完善的一个分支。本课程将通过课堂教学、野外实践观测,使学生能够掌握现代植物生态学研究的前沿领域和最新理论和方法,了解和把握学科发展动态。主要介绍:植物个体与环境因子的生态关系(包括光、温、水、大气及土壤等因子);植物种群生态;植物生殖生态;植物群落生态;植物生态系统;应用生态学等。  细胞工程学  细胞工程是现代生物工程中涉及面极其广泛的一门生物技术,本课程系统讲述细胞工程领域的主要技术原理与方法,全面介绍细胞工程知识体系的基本内容,并及时反映该领域的最新进展,为学生将来从事细胞工程领域的研究和开发工作奠定基础。  高级生物统计学  本课程将根据实际应用,主要介绍生物统计应用注意点以及试验数据的收集和试验设计方法。内容涉及统计分析方法的基本假定条件和原理、多元统计分析方法(多元回归相关、通径分析、因子分析、典范相关、聚类分析等)以及各种现代试验设计方法。并采用上机操作学会相关的多元分析。帮助学生提高试验数据处理的能力。  蛋白质组学  21世纪生命科学实际上已进入了后基因组时代,蛋白质组学是后基因组时代功能基因组学的新兴学科,也是生命科学最重要、最热点的研究领域之一。本课程主要讲述内容包括:蛋白质样品的全息制备,双向凝胶电泳,电泳图谱的图像分析,生物质谱技术和蛋白质鉴定,蛋白质组研究中的定量方法,蛋白质组研究中的翻译后修饰分析,亚细胞蛋白质组学,蛋白质组研究中的非凝胶技术,蛋白质相互作用和蛋白质芯片,蛋白质组生物信息学,以及蛋白质组学在生命科学各领域研究中的应用。通过本课程的学习,使学生掌握蛋白质组学的基本理论和研究方法,并能够开展相关研究。  高级植物生理学  植物生理学作为一门独立的学科,所研究的内容和范围在不断扩大和深入,最为明显的是分子生物学和遗传学的概念与技术已融入植物生理学。因此,21世纪的植物生理学将逐渐发展成为围绕植物生命活动过程的功能实现与调控,在植物功能基因组、蛋白质组和代谢组的水平上全面探讨植物生长发育分子机理的全新学科。本课程包括植物基因、细胞、呼吸作用、光合作用、生物固氮、营养和代谢、植物激素、生长发育、信号传导、环境与植物的关系等方面的内容。  发育生物学  发育生物学是生命科学中一门新兴的学科,是当代最活跃的生命科学研究领域之一,它应用现代生物学技术研究多细胞生物从生殖细胞的发生、受精、胚胎发育、生长、衰老和死亡等生命过程发展的机制。将分子生物学、细胞生物学、遗传学、生物化学、解剖学、生理学、免疫学、胚胎学、进化生物学以及生态学等多种学科整合在一起,揭示生命活动的本质。它既是重要的基础生命科学,又有广阔的应用前景。本课程将关注发育生物学科学研究动态,使学生了解动物和植物发育生物学的进展,完善自身的知识结构体系,把对生命科学的认识延伸到前沿。  开设院校  A等院校:北京大学、华中农业大学、湖南师范大学、武汉大学、兰州大学、华东理工大学、清华大学、同济大学、大连理工大学、浙江大学、南京大学、暨南大学、复旦大学、山东大学、大连医科大学、中国科学技术大学、四川大学、西北农林科技大学、吉林大学、华南农业大学、东北师范大学、华中科技大学、厦门大学、南开大学、中山大学、西南大学、北京师范大学、上海交通大学、汕头大学、中国农业大学、中南大学  B+ 等: 南京农业大学、西安交通大学、南方医科大学、四川农业大学、东北农业大学、河北医科大学、山西大学、山东农业大学、华东师范大学、哈尔滨医科大学、东北林业大学、福建农林大学、湖北大学、北京林业大学、南京医科大学、云南大学、内蒙古大学、东南大学、石河子大学、西南交通大学、天津大学、江南大学、南京林业大学、上海大学、哈尔滨工业大学、南昌大学、华南热带农业大学、徐州医学院、黑龙江大学、广东医学院、湖南农业大学、云南农业大学、南京师范大学、西北大学、东华大学、湖南大学、苏州大学、江苏大学、陕西师范大学、广西医科大学、北京理工大学、天津医科大学、华南理工大学、四川师范大学、山西农业大学、华中师范大学  B 等:福建师范大学、首都医科大学、昆明理工大学、吉林农业大学、辽宁大学、青岛农业大学、郑州大学、电子科技大学、新疆农业大学、安徽大学、河北农业大学、浙江工业大学、江西农业大学、深圳大学、广西大学、河北大学、宁波大学、中国药科大学、大连大学、辽宁医学院、安徽医科大学、山西医科大学、贵州大学、福州大学、北京交通大学、南华大学、沈阳药科大学、北京科技大学、兰州理工大学、沈阳农业大学、中国医科大学、首都师范大学、曲阜师范大学、北京工业大学、天津科技大学、新疆医科大学、河南师范大学、黑龙江八一农垦大学、上海师范大学、云南师范大学、佳木斯大学、宁夏大学、江苏科技大学、扬州大学、广西师范大学、昆明医学院、广西民族学院。  就业前景  该专业的毕业生多在实验室里工作,此外,刑侦和医学检验也会涉及该专业中的DNA分析技术、PCR技术等,因此,该专业毕业生也可以到公安系统或医疗机构工作。如果所学的专业研究方向是有关药物方面的,就业机会也比较多。  专家建议  生物化学与分子生物学这门学科发展很快,而且涉及面很广,从长远来看,发展前景还是不错的。就往年的招生人数来看,各院校生物化学与分子生物学专业的招生人数并不多,一些著名的重点院校如北京大学、上海交通大学等,竞争非常激烈。

6. 药物分离与纯化技术的重点内容

过滤用于固液混合的分离蒸馏提纯或分离沸点不同的液体混合物萃取利用溶质在互不相溶的溶剂里的溶解度不同,用一种溶剂把溶质从它与另一种溶剂所组成的溶液中提取出来的方法分液分离互不相溶的液体蒸发用来分离和提纯几种可溶性固体的混合物分液是根据密度进行分离的;萃取是根据溶解度不同分离的;蒸镏是根据沸点不同分离的;剩下几个真不好说,楼主看上的吧。

7. 药物分离与纯化技术题库

要看粗产物组分,选择成本低,效率高,损耗小,适合规模生产的方式。

制药工业上重结晶和多次蒸馏,分馏都比较常见,利用溶剂极性萃取等都很常见。除了精馏,重结晶,液相萃取,超临界萃取,离子交换,膜分离等手段,生化制剂如某类蛋白也会采用盐析,电泳等方式提纯。

8. 药物分离与纯化技术的重要性

药品质量必须严格控制,如生化药物是从生物体分离、纯化所得的用于预防、治疗和诊断疾病的生化基本物质,以及用化学合成、微生物合成或现代生物技术制得的这类物质。

生化药物有两个基本特点:其一,它来自生物体;其二,它是生物体中的基本生化成分。生化药物的生化基本物质主要包括氨基酸、肽、蛋白质、酶及辅酶、多糖、脂质、核酸及其降解产物,这些成分均具有生物活性或生理功能。

因生化药物源自生物体,其来源复杂、组成不明确,单靠质量标准无法有效地控制产品的质量。故控制原材料的来源和工艺过程,再加上原液(或半成品)和/或终产品(成品)的质量标准才有可能较好的控制产品的质量,保证临床应用的安全和有效。

顶一下
(0)
0%
踩一下
(0)
0%