发电机 技术动态 电机 空压机 磁力泵 水泵 图说机械 增压泵 离心泵 电磁阀 阀门 机床 止回阀 基础机械 蝶阀 截止阀 球阀 纺织 减压阀 压缩机 压滤机 液压件 气缸 保温材料 数控车床 打包机 贴标机 加工中心 激光打标机 包装机械 电焊机 印刷 换热器 工业机器人 铣床 冷水机 真空包装机 船舶 点胶机 柴油机 开槽机 模切机 制冷设备 蒸汽发生器 灌装机 氩弧焊机 吹瓶机 封边机 工业自动化 木工机械 焊接设备 激光焊接机 烫金机 套丝机 钢化炉 纸袋机 印刷机械 贴片机 工业烘干机 色选机 伺服电机 陶瓷机械设备 剪板机 折弯机 制砂机 压铸机 抛光机 注塑机 锅炉 3d打印机 模具 uv打印机 缝纫机 激光切割机 等离子切割机 破碎机 卷扬机 货架 精密空调 风机 高压风机 轴流风机 雕刻机 塑料托盘 温控器 工业洗衣机 管件 压力开关 孵化器 物流设备 冷却塔 真空泵 集装箱 燃气锅炉 超声波清洗机 齿轮箱 工控机 冷焊机 铣刨机 蒸汽清洗机光刻机 弯管机 高压清洗机 塑料机械 搬运机器人 深井泵 橡胶机械 螺杆泵 挤出机 齿轮油泵 循环泵 渣浆泵 自吸泵 齿轮泵 泥浆泵 气泵 蠕动泵 屏蔽泵 转子泵 伺服系统 气压罐 法兰 空气冷却器 绞盘 计量泵 PLC控制柜 回转支承 增压器 旋压机 液压设备 机械臂 硫化机 步进电机 抛丸机 航空发动机 燃气轮机 螺杆压缩机 谐波减速器 液压泵 行星减速机 螺丝机 齿条 机械密封 回转窑 颗粒机 水轮机 粉末冶金制品 补偿器 无刷电机 堆垛机 燃气调压器 燃烧器 旋转接头 给料机 空分设备 钻井机 电子束焊机 数控铣床 工业炉
返回首页

光刻机紫外光源(光刻机 紫外)

来源:www.haichao.net  时间:2023-02-07 11:27   点击:182  编辑:admin   手机版

1. 光刻机 紫外

制造更强大的芯片的关键是光的波长大小。波长越短,可以蚀刻到硅片上的晶体管就越多。更多的晶体管等于一个更强大、更快的微处理器。随着芯片制造商将波长减少到100纳米,他们将需要一种新的芯片制造技术。使用深紫外光蚀刻技术的问题是,当光的波长变小时,光会被用于聚焦的玻璃透镜吸收。结果是光线无法到达硅片上,因此晶圆上没有产生电路图案。这个时候就需要极紫外光刻机了。

用深紫外光刻技术制造的芯片使用的是248纳米的光,也有一些制造商使用193纳米光。有了极紫外光刻技术,芯片将用13纳米的光制造。基于波长越小成像效果越好的定律,13纳米光将提高投射到硅片上的图案质量,从而提高芯片的速度。

2. 光刻机紫外光源的作用

深紫外光光源。

90纳米光刻机使用的是深紫外光光源。紫外光光线在200纳米根据颜色叫做深紫外光,而通常duv光刻机就是使用该种类型紫外光,通常是193纳米的深紫外光。再通过镜头组使其压缩到90纳米精度,基本上是激光激发汞灯而形成的。

利用光刻机发出的紫外光源通过具有图形的光罩对涂有光刻胶的硅片曝光,使光刻胶性质变化、达到图形刻印在硅片上形成电子线路图。我国目前还是采用什深紫外光的193nm制程工艺,如上海微电子装备公司(CMEE)制程90nm工艺的光刻机。

3. 光刻机紫外线

光刻机辐射为紫外光非电离辐射,通常光源不外露没有辐射。

辐射指的是由场源发出的电磁能量中一部分脱离场源向远处传播,而后不再返回场源的现象。辐射分为电离辐射和非电离辐射,光刻机的紫外光源为非电离辐射。紫外辐射是一种非照明用的辐射源。紫外辐射的波长范围为10纳米至400纳米。由于只有波长大于100纳米的紫外辐射,才能在空气中传播,所以人们通常讨论的紫外辐射效应及其应用,只涉及100纳米至400纳米范围内的紫外辐射。而光刻机大部分深紫外光波长被控制在100纳米以内,所以没有外露辐射,而高端的极紫外光波长为13.5纳米就更没有辐射危害。

4. 光刻机紫外光源哪个国家的人

是美国的,光源是光刻机的核心部件,一直被美国掌握着

5. 紫外光刻技术

因为x射线具有穿透力,而穿透力产生的折射会浪费大量的能量,致使光刻机效率低下,甚至无法工作,所以不用x射线。

目前最顶尖的光刻机的光源波长达到13.5nm,被称为极紫外光(EUV)。想激发出极致波长的光源,自然需要极致的办法。

光刻机采用的方法是激光等离子体型光源,即利用高功率的激光击打金属锡,产生高温高密度的等离子体,辐射出极紫外光

6. 光刻机紫外光源原理

1947年,贝尔实验室发明第一只点接触晶体管。从此光刻技术开始了发展。

1959年,世界上第一架晶体管计算机诞生,提出光刻工艺,仙童半导体研制世界第一个适用单结构硅晶片。

1960年代,仙童提出CMOS IC制造工艺,第一台IC计算机IBM360,并且建立了世界上第一台2英寸集成电路生产线,美国GCA公司开发出光学图形发生器和分布重复精缩机。

1970年代,GCA开发出第一台分布重复投影曝光机,集成电路图形线宽从1.5μm缩小到0.5μm节点。

1980年代,美国SVGL公司开发出第一代步进扫描投影曝光机,集成电路图形线宽从0.5μm缩小到0.35μm节点。

1990年代,Cano着手300mm晶圆曝光机,推出EX3L和5L步进机;ASML推出FPA2500,193nm波长步进扫描曝光机。光学光刻分辨率到达70nm的“极限”。

2000年以来,在光学光刻技术努力突破分辨率“极限”的同时,NGL正在研究,包括极紫外线光刻技术、电子束光刻技术、X射线光刻技术、纳米压印技术等。

与此同时,荷兰光刻机巨头阿斯麦ASML,占据了63%的市场份额,产品集中在中高端的极紫外光刻EUV和深紫外光刻DUV上。

然而在2004年前,尼康是当之无愧的带头大哥,尼康一直将光刻机作为自己的核心产品,也是让日本企业引以为傲的“民族之光”,甚至当年能到尼康从事光刻机的研发一度成为众多日本大好青年的愿景。

再看ASML的基础并不好。从1984年诞生后的20年,ASML就一直是一个谜一样的存在,没有什么人会觉得ASML能够有什么未来,甚至包括他们自己。

早期ASML还叫做ASM,生存无望,之能找人投奔,后来飞利浦动了恻隐之心,在总部大厦旁边的空地上给ASML弄了几个简易厂房,ASML当时很艰苦,能活20年全靠日积月累出来的“销售手艺”。

魔幻的是,这点“手艺”居然成为了日后ASML登顶的关键。

苦苦支撑20年,ASML终于等待了他们第一个贵人——台积电鬼才林本坚,一个可以比肩张忠谋的人物。如果说张忠谋缔造了台积电的前20年,林本坚就为台积电的后二十年挣下了巨大的家当。

林本坚1942年出生于越南,中国台湾人,祖籍广东潮汕。林本坚1970年获得美国俄亥俄州立大学电机工程博士学位,2008年当选美国国家工程学院院士。在加入台积电之前,林本坚在IBM从事成像技术的研发长达22年,是当时世界无二的顶级微影专家。

2000年,林本坚在当时台积电研发长蒋尚义的邀请下加入台积电,开启了真正“彪悍的人生”。

在IBM最后几年,林本坚其实已经看到了傲慢的IBM在微影领域的大厦将倾。他希望IBM能够给予他当时微影部门所研发的X光光刻技术1/10的经费,用来“做点东西”,然而IBM因为其华人的身份,并不打算买账。

后来林本坚回忆说:“我判断到65纳米(干式光刻)阶段时,让我再往前看三代的话,我就已经看不到了。”

于是在众多人陷入X光光刻技术无法自拔的时候,林本坚义无反顾地投入了浸润式光刻技术的研究中。

终于在2002年,已经加入台积电的他研究出以水作为介质的193纳米浸润式光刻技术。也就是在2002年,冥冥之中宣告了过往干式光刻机的死刑。

浸润式光刻技术让摩尔定律继续延伸,后来台积电也因此领先竞争对手超过5年。

然而任何一项颠覆式新技术的出现,总会受到来自于传统势力巨大的阻力。林本坚的浸润式光刻,几乎被尼康、佳能、IBM等所有巨头封杀,尼康甚至向台积电施压,要求雪藏林本坚。

巨头的陨落,总是如出一辙。当年1947年12月,大名鼎鼎的美国贝尔实验室的肖克利(“晶体管之父”)、巴丁和布拉顿共同研制出了一种点接触型的锗晶体管!(三人因此获得了1956年的诺贝尔物理学奖)

顶一下
(0)
0%
踩一下
(0)
0%